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ABSTRACT

A multipath enabled singular value decomposition (SVD)
algorithm is presented, which will allow computation of
wideband (polynomial) singular values, and hence, the sig-
nal+noise and noise subspaces. Polynomial singular val-
ues are ordered according to total energy. The number of
sources can be estimated using the scalar total energy val-
ues. Results using both simulated data on the computer and
actual speech recorded in a noisy multipath environment
are given to demonstrate the usefulness of the techniques
shown. After number of sources estimation, only the sig-
nal+noise subspace is used to create virtual sensors which
have made optimal use of all the sensors. As a final signal
copy step, standard blind independent component analysis
(ICA) or blind source separation algorithms can be used to
recover the original data from the virtual sensors. The num-
ber of estimated sources could also be given to a blind al-
gorithm capable of using overdetermined sources and the
algorithm can adaptively make use of all sensor data.

1. INTRODUCTION

We address the problem of efficiently recoveringMs sources
givenM sensors of noisy, multipath mixed data. A key step
in the recovery process is estimation of the number of orig-
inal sources. In earlier work, we have given tools to com-
pute eigenvalues for multipath matrices. Singular value de-
composition (SVD) is conceptually an eigenroutine applied
to the spectrum of a matrix,AAH ; in which eigenvalues
and associated eigenvectors are ordered according to en-
ergy. Herein, we show how to use total energy (over all time
extent or, equivalently, over all frequencies) of the eigenval-
ues for ordering of eigenvalues and eigenvectors and decid-
ing between signal+noise and noise only subspaces.

Narrowband/scalar mixture processes are well described
by scalar matrix algorithms, but adding a wideband/multipath
dimension to the problem requires a new set of tools. We
present a fundamental singular value decomposition tech-

nique which uses (finite impulse response) FIR matrices,
whose elements are vectors and have time domain (or equiv-
alently, frequency domain) extent.

2. PROBLEM DESCRIPTION

The mixing process is described as

xt = Ast + nt (1)

wherest = (s1; � � � ; sMs
)Tt contains the samples of the un-

known source signals at timet, xt = (x1; � � � ; xM )Tt the
samples of theM sensor signals at sample timet, nt the
samples of the sensor noise at timet, with AM�Ms�L as
the unknown mixing matrix. In the overdetermined case,
we have more sensors than source signals (M >Ms).

2.1. Notation

The following notation is used throughout: Vectors are writ-
ten in lower case, matrices in upper case. The sample in-
dex is denoted byt. Ef�g denotes the expectation opera-
tor. Vector or matrix dimensions are given in superscript.
The Frobenius norm of a matrix is denoted byk � k

F
. Col-

umn vectors are bold-face, lower case symbols, as inx, and
column vectors with filters as elements are underlined bold-
face, lower case symbols, as inx: Matrix variables are in
bold face, upper case, as inA, and matrices of filters (FIR
matrices (see [1]) are underlined bold face, upper case sym-
bols, as inA. FIR matrices are usually assumed to be in
the frequency domain where convolution is multiplication
and standard Linear Algebra notation holds. We convert the
matrices to the frequency domain, perform all the computa-
tions and then convert back to the time domain at the final
step for plotting the result. The time domain or multipath
extent of filters and FIR matrices isL taps in length.I is the
unit FIR matrix and0 is the zero FIR matrix. Inner prod-
uct, row times column matrix multiplication rules, etc., all
apply in FIR matrix algebra, but the scalar matrix term by



scalar matrix term multiplication is replaced with element-
wise (across allL) multiplication of the frequency domain
representations of the corresponding FIR matrix terms.

2.2. Assumptions

In addition to the problem proposed above, we make the
following assumptions:

� A1 Time-invariant mixing matrixA.

� A2A has rankMs.

� A3 Source signalssm, m = 1; : : : ;Ms, are mutually
independent and iid.

R
ss

= Efsts
H

t
g = �2

s
I
Ms

(2)

� A4 Source signalssm (save possibly one) are non-
Gaussian. This assumption is required for full inde-
pendent component analysis (or signal copy), but not
for the PCA stage.

� A5All source signals are unknown and have the same
power�2s .

� A6 There are more sensors than source signalsM >

Ms.

� A7 All sensors have the same noise characteristics.
The sensor noise is additive white Gaussian noise with
power�2n. The sensor noise of the sensors is mutually
independent.

Rnn = Efntn
H

t g = �2n IM : (3)

� A8 The source signals and the sensor noise are mutu-
ally independent.

3. POLYNOMIAL SVD USING TOTAL ENERGY
ORDERING

By applying SVD onA, we have

A = U�V
H = U

"
~�

0

#
V
H (4)

whereUM�M�L andVMs�Ms�L are unitary FIR matrices
(UUH = I

M�M�L andVVH = I
Ms�Ms�L). Unitary

FIR matrices are isomorphic to the paraunitary matrices de-
fined in [2]. Unitary matrices contain only phase informa-
tion.

�
M�Ms�L and ~�

Ms�Ms�L

are diagonal FIR matrices
which contain the polynomial singular values ofA

~� = diagf�1; : : : ; �Ms
g (5)

with

p1 � p2 � � � � � pMs
> 0 (6)

where the last inequality comes from the assumptionA2;
and where the scalarspm are defined as the total summed
energy (same in time or frequency domain) in the wideband
singular values.

pm = �all k �
2
m(k) (7)

The SVD of the input correlation matrixR
xx

gives with
(2) and (3)
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with
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4. SIMULATION

4.1. PCA Results using Speech Recorded in a Noisy Re-
verberant Environment (Ms=1,M=5)

Five sensors were recorded of a speech signal uttered in an
automobile traveling at freeway speeds. The signal-to-noise
ratio is a function of frequency, but was very poor, in the
subjective range of 5 to -5 dB at each sensor. The multi-
path correlation matrix for this data corresponding toR

xx
;

equation (9) is shown in figure 1. A hundred seconds of
data was used, with a sample rate of 8000Hz. A time extent
of 16000 samples (2 seconds) was used. The energy order
eigenvalues ofR

xx
are shown in figure 2. Note that as in

scalar matrix algebra the eigenvalues ofR
xx

will contain
spectral magnitude information only (no phase). The eigen-
values shown are symmetric about time zero (completely
phaseless). Also, the singular vector matricesU andV are
unitary FIR matrices. We demonstrate this property in fig-
ure 3 by plottingUU

H = I:



4.2. PCA Results using Computer Generated Data (Ms=3,
M=6)

Next, we perform a controlled test using simulated uniformly
distributed source and white Gaussian noise. Three sources
of white uniformly distributed data (from�:5 to :5)were
convolved with the mixture matrixA given by:

2
6666664

:4 �:1 + :1z�1 �:2
�:1z�1 �:2 + : 2z�1 :4 + :23z�1

:1 � :2z�1 :1 + :5z�1 :3 � :1z�1

:3 :3z�1 �:4z�2

�:5z�1 :1 �:25z�1 + :15z�2

:45 �:38z�1 � :2z�2 �:3z�1 + :1z�2

3
7777775

(19)
Then, white Gaussian noise of�n = :1 was added. Results
of PCA follow as above, see figures 4, 5, 6, 7, 8.

4.3. ICA Results using MBLMS and Computer Gener-
ated Data (Ms=3,M=6)

The same data from the previous PCA simulation was ap-
plied to the multichannel blind LMS algorithm ([1]) for ICA
(full true-phase signal copy). The algorithm must be told the
number of sources to look for (this case 3). Figure 9 shows a
high quality separation using a scale invariant measure ISI.

5. CONCLUSION AND IMPLICATION TO
SOURCE SEPARATION OF OVERDETERMINED

MULTIPATH MIXTURES

Using FIR matrix tools, we have presented a multipath ex-
tension of SVD for signal subspace processing for estima-
tion of number of sources and principal component anal-
ysis. As the FIR matrix singular values are vectors with
time/frequency extent, we use the scalar total energy of each
singular value for ordering purposes. We have demonstrated
the extended SVD and number or sources estimation on
noisy reverberant speech data and simulated systems.

Recently in the area of source separation, there has been
interest to find the best ways to use extra (overdetermined)
sensors, see [3, 4, 5] . This has been especially true in light
of the fact that key algorithms which use RLS-type or rel-
ative gradient updates are restricted to dealing with square
(Ms = M ) mixtures. Our proposal is to first estimate the
number of original sources using the presented PCA/SVD
technique. Then, one has the option of collapsing the data
to virtual sensors containing only the principal sources and
proceeding to the ICA step were one can now use algo-
rithms limited to square mixtures. Alternatively, one can
use an LMS type update algorithm (not restricted to square
mixtures) which is instructed to recover the estimated num-
ber of original sources.
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Fig. 1. R
xx

of acoustic recording with one true speech
source in noise.



Fig. 2. Energy ordered singular values ofR
xx

for acoustic
recording.

Fig. 3. The result ofUUH for acoustic recording.

Fig. 4. Rxx of computer data with 3 sources and 6 sensors.

Fig. 5. Energy ordered singular values ofR
xx

of computer
data with 3 sources and 6 sensors.
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Fig. 6. The termspm; scalar summed energy ofR
xx

of
computer data with 3 sources and 6 sensors.

Fig. 7. Unitary singular vector matrixU of computer data
with 3 sources and 6 sensors.



Fig. 8. The result ofUUH for computer data with 3 sources
and 6 sensors.
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Fig. 9. ICA results for (Ms=3, M=6) multichannel blind
LMS adaptation. Column ISI (a scale invariant measure of
convergence) taken from the three columns of the global
system as convergence proceeds.


