
NEWTON METHOD FOR JOINT APPROXIMATE

DIAGONALIZATION OF POSITIVE DEFINITE HERMITIAN

MATRICES

MARCEL JOHO∗

SIAM J. Matrix Anal. Appl., Vol. 30, No. 3, pp. 1205 - 1218, 2008. (draft)

Abstract. In this paper we present a Newton method to jointly approximately diagonalize a
set of positive definite Hermitian matrices. To this end, we derive the local gradient and Hessian of
the underlying cost function in closed form. The algorithm is derived for the complex case and can
also update a non-square diagonalization matrix. We analyze the cost function at the critical points
and show its relation to a different cost function that is commonly studied.

Key words. Joint approximate diagonalization, Independent Component Analysis (ICA), New-
ton method, gradient and Hessian of a complex matrix-valued cost function.

AMS subject classifications. 15A23, 49M15, 49Q12, 65F30.

1. Problem formulation and cost function. The mathematical problem of
jointly approximately diagonalizing a set of P covariance matrices, {Rp}

P
p=1, is of

interest in statistical methods such as common principal component analysis [7].
Recently the joint diagonalization problem has received more attention also in the
community of independent component analysis and blind signal separation, as some
problems that occur in those fields can be formulated as a joint-diagonalization opti-
mization problem. As an example, we can describe one class of blind signal separation
problems as follows:

Let s(t) be an M -dimensional vector containing the time series of M mutually
independent source signals that are mixed by a mixing matrix AN×M , such that
x(t) =As(t) is an N -dimensional vector containing the time-series of N sensor sig-
nals. In the blind signal separation problem the assumption is made that s(t) and
A are unknown, only the signals at the sensors, x(t), are known. Furthermore, the
assumption is made that the source signals are non-stationary and mutually indepen-
dent. Hence, Rss(t) , E{s(t)sH(t)} depends on t and has a diagonal structure. If
we further assume that the source signals are non-stationary, then Rss(t) is time-
varying, but always has a diagonal structure. The correlation matrix of the sensor
signals Rxx(t) , E{x(t)xH(t)} = AE{s(t)sH(t)}AH = ARss(t)A

H becomes also
time-varying, but has no diagonal structure in general. In order to recover the un-
known source signals, we aim at finding a separation matrix W such that u(t)=Wx(t)
becomes an estimate of the original source signals s(t), aside from a possible scaling
and permutation of the elements in u(t). In order for u(t) to become an estimate of
s(t), the correlation matrix

Ruu(t) , E{u(t)uH(t)}=WRxx(t)WH (1)

has to be diagonal for all t. Assuming that W is time-invariant, W has to be of the
following structure:

W = DPA−1 (2)

∗Bose Corp., Framingham, MA, USA (joho@ieee.org).

1

2 M. JOHO

or, if AN×M is a tall matrix (N > M),

W = DPA# (3)

where D is an arbitrary diagonal matrix, P is an arbitrary permutation matrix, and
A# denotes the pseudo-inverse of A. If we take P snapshots of Rxx(t), Rp , Rxx(tp),
where tp is the time instance of the pth snapshot, then we can formulate the task of
finding a proper W as the following joint-diagonalization problem:

Given a set of P positive definite Hermitian matrices Rp, find a single matrix
W that approximately joint diagonalizes the whole set {Rp} such that WRpW

H is
diagonal ∀p.

Perfect diagonalization is typically not possible for a set of random positive defi-
nite Hermitian matrixes {Rp}, unless {Rp} is a set of commuting matrices [9]. How-
ever, the set {WRpW

H} can still be approximately jointly diagonalized subject to a
given cost function J (W; {Rp}

P
p=1) that measures the degree of joint diagonalization.

Several cost functions for the joint-diagonalization problem have been published in
the last decade. In [5] Cardoso and Souloumiac have proposed a joint-diagonalization
cost function and have given a very effective Jacobi-type algorithm that minimizes
their cost function under the constraint that the diagonalization matrix W is unitary.
The core idea of their algorithm has been used in in JADE [4] and SOBI [1], both
very popular BSS algorithms.

In [17] Yeredor has published an algorithm, AC-DC, that uses a different cost
function and is based on a subspace-fitting formulation. One advantage is that no
orthogonality constraints are imposed on the diagonalization matrix W. However,
W needs to be square and real. In [19] Yeredor et. al have also derived an algorithm
based on the natural gradient that works even with non-positive definite matrices Rp,
however, W needs to be real and square. Yeredor has also described in [18] how to
compute a good initial value W0 for any iterative algorithm.

Another joint-diagonalization algorithm, FFDIAG, that seems to have a very fast
convergence rate, was presented by Ziehe et. al. in [20]. FFDIAG also requires that
Rp and W need to be a real square matrices. An extension of FFDIAG where W

can be non-square or complex has not been published so far.
Recently, Vollgraf and Obermayer [16] have published an algorithm for the real

case, QDIAG, that also works for a non-square W. Their algorithm sequentially solves
a quadratic sub-problem, which avoids the appearance of any higher-order terms
in their cost function. QDIAG seems to have a similar convergence performance
as FFDIAG and is very appealing from a computational point of view for joint-
diagonalizing large sets of matrices.

In [14], Pham has presented an efficient joint-diagonalization algorithm that im-
poses no optimization constraints on W, except that W needs to be square (N =
M). This algorithm is also a Jacobi-type algorithm. In contrast to most other
joint-diagonalization algorithms, which minimize a constraint optimization problem,
Pham’s algorithm is formulated to minimize an unconstraint optimization problem.
The underlying cost function of this algorithm is based on some preliminary work by
Fluri and Gautschi [7, 8], namely

J (W) ,

P∑

p=1

βp

[
log

(
det

(
diag

(
WRp WH

)))
− log

(
det

(
WRp WH

))]
(4)

where the matrices Rp ∈ CN×N are Hermitian and need to be positive definite. The
weights βp are positive scalars. Consequently, the matrix products WRp WH ∈

Newton Method for Joint Approx. Diagonalization 3

CM×M are also Hermitian and positive definite, assuming W has full rank. The cost
function (4) is motivated by the Hadamard inequality

det(Q) ≤ det(diag(Q)) (5)

with equality if and only if Q is diagonal [9].
In the following, we will also use the cost function (4) as the basis of a Newton-type

algorithm that we will derive. There are a few fundamental differences between the
derived Newton algorithm and Pham’s Jacobi-type algorithm. In Pham’s algorithm,
every iteration consists of a pairwise update of two rows at a time. One sweep of the
algorithm consists of iterating once through all possible combinations of pairing two
rows. Pham has shown that near a minimum, an iteration of his algorithm behaves
similarly to a quasi Newton-Raphson iteration.

In contrast to Pham’s algorithm, we will use a pure Newton algorithm that up-
dates all coefficients in W in every iteration. The main difficulty in deriving a pure
Newton algorithm, as opposed to a quasi-Newton algorithm, is that the Hessian needs
to be known in closed form in every iteration. One major difference to Pham’s al-
gorithm will be that we drop the constraint that W needs to be square, and allow
W ∈ CM×N to be rectangular with M ≤ N . Translated to the blind signal separa-
tion problem, our algorithm is also capable to work for the case where more sensor
signals than source signals are present. This is particularly useful in case the number
of source signals is not known beforehand.

In the following sections, we will derive the gradient and Hessian of the cost
function (4) in close form. To this end, we will use the matrix-form representation of
the second-order Taylor series expansion as described by Manton in [13]. This form
allows to represent the gradient and the Hessian in a very compact form with the
help of Kronecker products. As we will see, just as products of matrices reveal more
structure than nested sums, the use of Kronecker products reveals the structure of the
Hessian on an even higher level than by using matrices inside nested sums. Thorough
treatments of Kronecker products and their properties are given in [3, 12].

1.1. Notation. The notation used throughout this paper is the following: Vec-
tors are written in lower case, matrices in upper case. Matrix and vector transpose,
complex conjugation, and Hermitian transpose are denoted by (.)T , (.)∗, and (.)H ,
respectively. The M × M identity matrix is denoted by IM×M . The Frobenius norm
and the trace of a matrix are denoted by ‖ . ‖F and tr (.), respectively. The spectral
radius of a matrix Q is the nonnegative real number ρ(Q) = max{|λmax(Q)|}, see [9].
Matrix dimensions are given in superscript, e.g., WM×N . The operator vec(W)
forms a column vector by stacking the columns of W, and WM×N = matM×N (w)
is the inverse operation of w =vec(WM×N). The Kronecker product [3] is denoted
by ⊗. The MN × MN dimensional permutation matrix PM×N , where the subscript
M × N is the argument of PM×N , is uniquely defined with

vec(WT) ≡ PM×N vec(WM×N) (6)

as vec(W) and vec(WT) contain the same elements, just arranged in a different
order. With Q̄ = diag(q) we get a square diagonal matrix that contains the elements
of the vector q in its diagonal. The matrix Q̄ = diag(Q) is a diagonal matrix where
its diagonal elements are the same as the diagonal elements of Q, and

off(Q) , Q− diag(Q) (7)

4 M. JOHO

keeps all off-diagonal elements of Q and sets all diagonal elements of Q to zero.
Furthermore, we define the two following M2 × M2 diagonal projection matrices

Pdiag , diag(vec(IM×M)) (8)

Poff , IM2
×M2 − Pdiag (9)

which appear in the following two relations:

vec(diag(Z)) = Pdiag vec(Z) (10)

vec(off(Z)) = Poff vec(Z) . (11)

2. Second order Taylor series of the cost function J (W).

2.1. Matrix form of second order Taylor approximation. In the following
we will derive the gradient and Hessian of the cost function (4) with respect to the
free parameters, i.e., the elements of W. First we need to define how the gradient
and Hessian are represented. Since the free parameters in the cost function (4) are
arranged in the matrix W, we decide to use the matrix form of the second order
Taylor series as given by Manton in [13]:

Let J : C
M×N → R be a cost function. Then we can describe the Taylor series

expansion of J at W as

J (W + δZ) = J (W) + δ Re{tr
(
ZHDW

)
}

+
δ2

2
vec(Z)HHW vec(Z)

+
δ2

2
Re{vec(Z)T CW vec(Z)} + O(δ3) (12)

where W,Z ∈ CM×N , DW ∈ CM×N is the gradient of J evaluated at W, and
HW,CW ∈ CMN×MN are the Hessian of J evaluated at W. The scalar δ is a small
real number. Uniqueness can be achieved by requiring HH

W
=HW and CT

W
=CW.

In contrast to the commonly known vector form of the Taylor series expansion

J (w + δz) = J (w) + δ zT d +
δ2

2
zT Hz + O(δ3) (13)

where the coefficients of W are rearranged in the real vector

w ,

(
wre

wim

)
,

(
Re{vec(W)}
Im{vec(W)}

)
, (14)

the matrix form often reveals the structure of the gradient and the Hessian in a much
more transparent form via matrix and Kronecker products. The gradients and the
Hessians of the two Taylor expansion forms (12) and (13) can be transformed into
each other, as described in [10].

2.2. Derivation of the gradient and Hessian. In order to simplify the deriva-
tion of the gradient and Hessian of J (.), we rewrite the cost function (4) as

J (W ; {βp}, {Rp}) ,

P∑

p=1

βp J̃ (W;Rp) (15)

Newton Method for Joint Approx. Diagonalization 5

with

J̃ (W;Rp) , J (1) (W;Rp) − J (2) (W;Rp) (16)

J (1) (W;R) , log
(
det

(
diag

(
WRWH

)))
(17)

J (2) (W;R) , log
(
det

(
WRWH

))
. (18)

2.3. Gradient and Hessian of J (1) (.). In order to derive the gradient and
Hessian of J (1), defined in (17), we do the following expansion

J (1) (W + δ Z) , log
(
det

(
diag

(
(W + δ Z) R (W + δ Z)H

)))
(19)

= log
(
det

(
diag

((
WRWH + δ

(
WRZH + ZRWH

)
+ δ2ZRZH

))))
. (20)

By substituting

Q̄ , diag
(
WRWH

)
(21)

we can formulate (20) as

J (1) (W + δ Z) = log
(
det

(
Q̄

(
I + δ Q̄−1 diag

(
WRZH + ZRWH

)

+ δ2 Q̄−1 diag(ZRZH)
)))

(22)

= J (1) (W) + log
(
det

(
I + δ Q̄−1 diag

(
WRZH + ZRWH

)

+ δ2 Q̄−1 diag
(
ZRZH

)))
(23)

= J (1) (W) + log
(
det

(
I + δ A + δ2B

))
(24)

with

A , Q̄−1 diag
(
WRZH + ZRWH

)
(25)

B , Q̄−1 diag
(
ZRZH

)
. (26)

Here we made use of detXY = detX detY which is valid for square matrices X, Y.
Before we continue to simplify (24), we introduce the following proposition:

Proposition 2.1. Let A,B ∈ C
N×N . Then, for δ → 0,

log
(
det

(
I + δ A + δ2B

))
= δ trA + δ2 trB−

1

2
δ2 trA2 + O(δ3) . (27)

Proof. Let S ∈ CN×N with spectral radius ρ(S) < 1. We know that for any
non-singular G ∈ CN×N we have log (det (G)) = tr (log (G)). We also know that

log (I + G) =
∑

k
(−1)k+1

k
Gk for any G ∈ CN×N with ρ(G) < 1. Note that the

assumption ρ(S) < 1 implies that I + S is non-singular. Hence, combining the above
results we have

log(det(I + S)) =
∑

k

(−1)k+1

k
Sk . (28)

Now, if we insert S=δ A + δ2 B into (28) and let δ → 0 we obtain (27). �

Note that the logarithm for complex arguments is not uniquely defined. However,
we will only apply (28) for Hermitian matrices S with ρ(S) < 1. Consequently all
eigenvalues of I + S, and also det(I + S), will be real and positive.

6 M. JOHO

If we apply (27) in (24) we obtain

J (1) (W + δ Z) = J (1) (W) + δ trA + δ2 trB−
1

2
δ2 trA2 + O(δ3) (29)

where A and B are defined in (25) and (26), respectively. We now analyze each of
the three δ terms in (29) separately. We start with

trA = tr
(
Q̄−1 WRZH + Q̄−1 ZRWH

)
(30)

= tr
(
ZH Q̄−1 WR + RWH Q̄−1 Z

)
(31)

= 2 Re{ tr
(
ZH Q̄−1 WR

)
} . (32)

Here we made use of tr (diag(X) diag(Y))=tr (X diag(Y))=tr (diag(X)Y). The
third term in (29), where A is defined in (25), can be modified as

trA2 = tr
(
Q̄−1

(
WRZH + ZRWH

)
Q̄−1 diag

(
WRZH + ZRWH

))
(33)

= tr
(
Q̄−1WRZHQ̄−1 diag

(
WRZH

))

+ tr
(
Q̄−1WRZHQ̄−1 diag

(
ZRWH

))

+ tr
(
Q̄−1ZRWHQ̄−1 diag

(
WRZH

))

+ tr
(
Q̄−1ZRWHQ̄−1 diag

(
ZRWH

))
(34)

= 2 tr
(
ZH Q̄−1 diag

(
ZRWH

)
Q̄−1WR

)

+ tr
(
ZRWH Q̄−1 diag

(
ZRWH

)
Q̄−1

)

+ tr
(
ZH Q̄−1 diag

(
WRZH

)
Q̄−1WR

)
(35)

where we used tr (XY) = tr (YX) and some elementary properties of tr (.) with
diagonal matrices. With the help of (94) and (95) we obtain

trA2 = 2 vec(Z)H
[(

Q̄−1 WR
)T

⊗ Q̄−1
]
vec(diag

(
ZRWH

)
)

+ vec(Z)T PT
M×N

[
Q̄−T ⊗ RWH Q̄−1

]
vec(diag

(
ZRWH

)
)

+ vec(Z)H
[(

Q̄−1 WR
)T

⊗ Q̄−1
]
vec(diag

(
WRZH

)
) . (36)

Next we make use of (10). With further help of (93) and (84) we get

trA2 = 2 vec(Z)H
[(

Q̄−1 WR
)T

⊗ Q̄−1
]
Pdiag

[(
RWH

)T
⊗ IM

]
vec(Z)

+ vec(Z)T PT
M×N

[
Q̄−T ⊗ RWH Q̄−1

]
Pdiag

[(
RWH

)T
⊗ IM

]
vec(Z)

+ vec(Z)H
[(

Q̄−1 WR
)T

⊗ Q̄−1
]
Pdiag [IM ⊗ WR]PM×N vec(Z)∗ . (37)

In this case Pdiag is an M2×M2 dimensional matrix. By making use of (92) we obtain

trA2 = 2 vec(Z)H
[
RT WT Q̄−T ⊗ Q̄−1

]
Pdiag

[
W∗ RT ⊗ IM

]
vec(Z)

+ vec(Z)T
[
RWH Q̄−1 ⊗ Q̄−T

]
PM×M Pdiag

[
W∗RT ⊗ IM

]
vec(Z)

+ vec(Z)H
[
RT WT Q̄−T ⊗ Q̄−1

]
Pdiag PM×M [WR ⊗ IM] vec(Z)∗ . (38)

Newton Method for Joint Approx. Diagonalization 7

Since PN×M = P−1
M×N = PT

M×N and PM×M Pdiag = Pdiag PM×M , we get

trA2 = 2 vec(Z)H
[
RT WT Q̄−T ⊗ Q̄−1

]
Pdiag

[
W∗ RT ⊗ IM

]
vec(Z)

+ vec(Z)T
[
RWH Q̄−1 ⊗ Q̄−T

]
Pdiag PM×M

[
W∗RT ⊗ IM

]
vec(Z)

+ vec(Z)H
[
RT WT Q̄−T ⊗ Q̄−1

]
Pdiag PM×M [WR ⊗ IM] vec(Z)∗ (39)

= 2 vec(Z)H
[
RT WT Q̄−T ⊗ Q̄−1

]
Pdiag

[
W∗ RT ⊗ IM

]
vec(Z)

+ 2 Re{vec(Z)T
[
RWH Q̄−1 ⊗ Q̄−T

]
Pdiag PM×M

[
W∗RT ⊗ IM

]
vec(Z)}.

(40)

In the last step we used the fact that R∗ =RT and Q̄∗ = Q̄T , as R and Q̄ are both
Hermitian. Finally, the second term in (29) can be modified with (95) as

trB = tr
(
Q̄−1 diag

(
ZRZH

))
= tr

(
Q̄−1 ZRZH

)
(41)

= tr
(
ZHQ̄−1 ZR

)
(42)

= vec(Z)H
[
RT ⊗ Q̄−1

]
vec(Z) . (43)

Inserting (32), (40), and (43) into (29) yields

J (1) (W + δ Z)

= J (1) (W) + 2 δ Re{ tr
(
ZH Q̄−1 WR

)
} + δ2 vec(Z)H ·

·
([

RT ⊗ Q̄−1
]
−

[
RT WT Q̄−T ⊗ Q̄−1

]
Pdiag

[
W∗ RT ⊗ IM

])
vec(Z)

− δ2
Re{ vec(Z)T

[
RWH Q̄−1 ⊗ Q̄−T

]
Pdiag PM×M

[
W∗RT ⊗ IM

]
vec(Z)}

+ O(δ3) . (44)

By coefficient comparison between (44) and the matrix form of the second-order Taylor
series (12), and using RT = R∗ and (91), we finally obtain

D
(1)
W

= 2 Q̄−1 WR (45)

H
(1)
W

= 2
[
RT ⊗ Q̄−1

]
− 2

[
RT WT ⊗ IM

] [
Q̄−T ⊗ Q̄−1

]
Pdiag [W∗ R∗ ⊗ IM] (46)

C
(1)
W

= −2
[
RWH ⊗ IM

] [
Q̄−1 ⊗ Q̄−T

]
Pdiag PM×M [W∗R∗ ⊗ IM] (47)

where Q̄ is defined in (21).

2.4. Gradient and Hessian of J (2) (.). Deriving the gradient and Hessian of
J (2) (W) , log

(
det

(
WRWH

))
, as defined in (18), can be done in a similarly way

as it was done for J (1) in the previous section. To this end, we expand J (2) as

J (2) (W + δ Z) = log
(
det

(
(W + δ Z) R (W + δ Z)

H
))

(48)

= log
(
det

(
WRWH + δ

(
WRZH + ZRWH

)
+ δ2ZRZH

))
.

(49)

By substituting

Q , WRWH (50)

8 M. JOHO

we can rewrite (49) as

J (2) (W + δ Z)

= log
(
det

(
Q

(
I + δ Q−1

(
WRZH + ZRWH

)
+ δ2 Q−1ZRZH

)))
(51)

= J (2) (W) + log
(
det

(
I + δ Q−1

(
WRZH + ZRWH

)
+ δ2 Q−1ZRZH

))
.

(52)

By inspection, we see that (52) has the same structure as (23) and therefore can also
be written in the form

J (2) (W + δ Z) = J (2) (W) + log
(
det

(
I + δ A + δ2B

))
, (53)

this time with

A , Q−1
(
WRZH + ZRWH

)
(54)

B , Q−1ZRZH . (55)

One difference, though, is that the matrices Q, A, and B are this time no longer
diagonal, in general. However, since in the previous calculations we only made the
assumption that these matrices needed to be Hermitian and not diagonal, we can use
(27) again and carry out the further steps in exactly the same manner as it was done
for J (1). By going through the same derivation steps, we finally obtain

D
(2)
W

= 2Q−1 WR (56)

H
(2)
W

= 2
[
RT ⊗ Q−1

]
− 2

[
RT WT ⊗ IM

] [
Q−T ⊗ Q−1

]
[W∗ R∗ ⊗ IM] (57)

C
(2)
W

= −2
[
RWH ⊗ IM

] [
Q−1 ⊗ Q−T

]
PM×M [W∗R∗ ⊗ IM] . (58)

By comparing (56) to (58) with (45) to (47), respectively, basically Q̄ is replaced by
its non-diagonal version Q, and Pdiag is replaced by IM .

2.5. Gradient and Hessian of J (.). Because of the definitions (16), (17), and

(18) we can write the gradient and the Hessian of J̃ (.) as

D̃W (W;Rp) = D
(1)
W

(W;Rp) − D
(2)
W

(W;Rp) (59)

H̃W (W;Rp) = H
(1)
W

(W;Rp) − H
(2)
W

(W;Rp) (60)

C̃W (W;Rp) = C
(1)
W

(W;Rp) − C
(2)
W

(W;Rp) (61)

where D
(1)
W

, H
(1)
W

, and C
(1)
W

are defined in (45), (46), and (47), respectively, and D
(2)
W

,

H
(2)
W

, and C
(2)
W

are defined in (56), (57), and (58), respectively. By inserting these
terms into (59), (60), and (61), and after some rearranging we finally obtain ∀p

D̃W (W;R) = 2 (Q̄−1 − Q−1)WR (62)

H̃W (W;R) = 2
[
RT ⊗ (Q̄−1 − Q−1)

]

+ 2
[
RT WT ⊗ IM

] ([
Q−T ⊗ Q−1

]
−

[
Q̄−T ⊗ Q̄−1

]
Pdiag

)

· [W∗ R∗ ⊗ IM] (63)

C̃W (W;R) = 2
[
RWH ⊗ IM

] ([
Q−1 ⊗ Q−T

]
−

[
Q̄−1 ⊗ Q̄−T

]
Pdiag

)

· PM×M [W∗R∗ ⊗ IM] . (64)

Newton Method for Joint Approx. Diagonalization 9

Finally, because of (15), we can write the gradient and the Hessian of the cost function
J as

DW =
P∑

p=1

βp D̃W (W;Rp) (65)

HW =

P∑

p=1

βp H̃W (W;Rp) (66)

CW =
P∑

p=1

βp C̃W (W;Rp) (67)

The equations (62) to (67) are the gradient and the Hessian of the cost function (4).

2.6. Comparison between gradient and Hessian of J and Joff. A well
know cost function used for the joint-diagonalization problem is [5]

Joff (W ; {βp}, {Rp}) ,

P∑

p=1

βp

∥∥ off(WRp WH)
∥∥2

F
(68)

subject to a constraint that prevents W to become zero. We now like to make a
comparison between the gradient and Hessian of J and Joff. The gradient and Hessian
of the term Ĵ , ‖ off(WRp WH)‖2

F , which appears in (68), are [10]

D̂W (W;R) = 4 off(Q)WR (69)

ĤW (W;R) = 4
[
RT ⊗ off(Q)

]
+ 4

[
RT WT ⊗ IM

]
Poff [W∗ R∗ ⊗ IM] (70)

ĈW (W;R) = 4
[
RWH ⊗ IM

]
Poff PM×M [W∗R∗ ⊗ IM] . (71)

We wish to bring the gradient and Hessian of J into a similar form. To this end, we
reformulate the term Q̄−1 − Q−1 as

Q̄−1 − Q−1 = Q̄−1 (Q− Q̄)Q−1 = Q̄−1 off(Q)Q−1 (72)

where off(.) is defined in (7) and Q̄ , diag(Q), see (21) and (50). Furthermore,
since Pdiag + Poff = I we have

[
Q−T ⊗ Q−1

]
−

[
Q̄−T ⊗ Q̄−1

]
Pdiag

=
([

Q−T ⊗ Q−1
]
−

[
Q̄−T ⊗ Q̄−1

])
Pdiag +

[
Q−T ⊗ Q−1

]
Poff . (73)

By inserting (72) into (62) and (63), and (73) into (63) and (64) we can write the
gradient and Hessian of J as

D̃W (W;R) = 2 Q̄−1 off(Q)Q−1 WR (74)

H̃W (W;R) = 2
[
RT ⊗ Q̄−1 off(Q)Q−1

]

+ 2
[
RT WT ⊗ IM

] ([
Q−T ⊗ Q−1

]
−

[
Q̄−T ⊗ Q̄−1

])
Pdiag [W∗ R∗ ⊗ IM]

+ 2
[
RT WT ⊗ IM

] [
Q−T ⊗ Q−1

]
Poff [W∗ R∗ ⊗ IM] (75)

C̃W (W;R) =

2
[
RWH ⊗ IM

] ([
Q−1 ⊗ Q−T

]
−

[
Q̄−1 ⊗ Q̄−T

])
Pdiag PM×M [W∗ R∗ ⊗ IM]

+ 2
[
RWH ⊗ IM

] [
Q−1 ⊗ Q−T

]
Poff PM×M [W∗ R∗ ⊗ IM] . (76)

10 M. JOHO

This form allows us to see clear similarities between the gradient and Hessian terms
of the two cost functions Joff and J when comparing (69) to (71) with (74) to (76),
respectively: In the gradient and the first term of the Hessian, off(Q) is replaced by
Q̄−1 off(Q)Q−1. Note that Q and Q̄ are both positive definite matrices. The last
terms of the Hessian terms also show a very similar structure. The only difference is
the additional term Q−T ⊗ Q−1 in the Hessian of J , which is also positive definite.
The second term of H̃W and the first term of C̃W have no corresponding terms in
ĤW and ĈW.

2.7. Discussion of critical points. The critical points are defined where the
gradient of J becomes zero. From (74) we see that D̃W becomes zero if off(Q) ≡ 0

and consequently Q ≡ Q̄. Since we can reformulate, similar to (72),

[
Q−T ⊗ Q−1

]
−

[
Q̄−T ⊗ Q̄−1

]
= −

[
Q−T ⊗ Q−1

]
off(QT ⊗ Q)

[
Q̄−T ⊗ Q̄−1

]

(77)

and the Kronecker product of two diagonal matrices is a diagonal matrix, the term
off(Q̄T ⊗ Q̄) becomes zero. Hence, the Hessian terms of J at the critical points are

H̃W (W;R) = 2
[
RT WT ⊗ IM

] [
Q̄−T ⊗ Q̄−1

]
Poff [W∗ R∗ ⊗ IM] (78)

C̃W (W;R) = 2
[
RWH ⊗ IM

] [
Q̄−1 ⊗ Q̄−T

]
Poff PM×M [W∗ R∗ ⊗ IM] . (79)

When comparing (78) and (79) with (70) and (71), respectively, we make the inter-
esting discovery that, besides the diagonal matrix Q̄−T ⊗ Q̄−1 and a scaling factor,
the Hessian of J and Joff at the critical points have an identical structure.

3. The Newton Algorithm. Once we have derived the gradient and Hessian of
our cost function, we can now formulate the Newton algorithm. The Newton update
at iteration k can be written as

Wk+1 = Wk + µkSk (80)

where Sk is the search direction and µk is the step size of the kth update. The
individual steps of the Newton algorithm are given in Fig. 3.1. Since our cost function
is non-quadratic, we use a modified Newton step that incorporates an Armijo line
search. In the vicinity of the minimum the update will approach the pure Newton
step.

The described Newton algorithm is built upon a vector-form Newton algorithm,
where the complex coefficients of Wk are arranged in a length 2MN real vector wk

as defined in (14). Hence, the vector dk and the matrix Hk are the gradient and
Hessian of the vector form of the Taylor series expansion of J (wk), see (13).

Since our cost function is not quadratic, the Hessian Hk can have negative eigen-
values. By choosing σk such that Hk + σkI becomes positive definite, the inverse
[Hk + σkI]

−1
will be positive definite as well. This will ensure that sk and Sk will

point to a descent direction, just like the negative gradient −dk does. Hence, σk must
be chosen larger than −λmin(Hk) if Hk has non-positive eigenvalues, where λmin is
the smallest eigenvalue of Hk. In the vicinity of a local minimum, σk will become zero
and the update will approach the pure Newton update for µk =1. On the other hand,
if σk is chosen very large, the search direction sk will become close to the direction of
the negative gradient. For efficiency reasons, Hk is often regularized via a modified
Cholesky factorization method [2, Sec. 1.4]. Therefore the described modified Newton
algorithm should be understood more as a prototype algorithm. The step size µk is

Newton Method for Joint Approx. Diagonalization 11

Modified Newton algorithm

Initialization (k=0): W0 ∈ CM×N .

For k=1, 2, . . . until convergence,
1. Compute gradient DWk with (65) and (62).
2. Compute Hessian {HWk,CWk} with (66), (63), (67), and (64).
3. Compute the real vector

dk ,

(
dre

dim

)
:=

(
Re{vec(DW)}
Im{vec(DW)}

)

4. Compute the real matrix

Hk :=

[
Re{HW + CW} −Im{HW + CW}
Im{HW − CW} Re{HW − CW}

]

5. Compute the real vector

sk := − [Hk + σkI]
−1

dk

where σk ≥ 0 is chosen such that Hk + σkI becomes positive definite.
6. Compute the complex matrix Sk := matM×N (sre

k + jsim
k) which corre-

sponds to the inverse operation of

sk ,

(
sre

sim

)
=

(
Re{vec(Sk)}
Im{vec(Sk)}

)

7. Perform update Wk+1 := Wk +µkSk where the step size µk is found via
a line-search algorithm, e.g., an Armijo line search (see Appendix B).

Fig. 3.1. Modified Newton algorithm.

obtained from a line-search step, e.g., an Armijo line-search method [2,6,11,15], which
guarantees that J (Wk+1) ≤ J (Wk) and µk is chosen not-to-small. The reason to
include a variable step size µk into the Newton update is motivated by the fact that
in our case J is a non-quadratic cost function. In this case the Newton step, µk =1,
often overshoots the local minimum, even if the Hessian Hk is positive definite. Close
to a minimum, where the cost function can be approximated by a quadratic curvature,
the Armijo line-search method will often set µk automatically to one.

4. Simulation example. We give now a simulation example where the perfor-
mance between the Newton algorithm and a steepest-descent algorithm are compared.
This simulation is set up such that a perfect joint diagonalization is possible. The
chosen parameters are M = 3 and N = 5. For each simulation trial we generate a
random complex matrix A ∈ C

5×3, such that AHA = I3. Then we generate for
each trial a set of P = 15 correlation matrices {Rp}

15
p=1 ={AΛΛΛp AH}15

p=1 where each
ΛΛΛp ∈ R3×3 is a diagonal matrix whose elements are randomly chosen from a uniform
distribution between 0.1 and 1. Hence, each ΛΛΛp is positive definite, and each Rp is
positive semi-definite and has rank 3. Fig. 4.1 compares the performance between

12 M. JOHO

0 10 20 30 40 50 60 70 80 90 100
10

−20

10
−10

10
0

J(
W

)
(a)

(b)

0 10 20 30 40 50 60 70 80 90 100

10
−20

10
0

J of
f(W

)

iterations

(a)

(b)

Fig. 4.1. Learning curves of J (Wk) (top) and Joff(Wk) (bottom) for five indepen-
dent simulations using (a) modified Newton method and (b) steepest-descent algorithm.

the Newton algorithm, using Armijo line searches, and a gradient type update. The
top curve shows the performance of the cost function J , defined in (4), the bottom
curve shows how the cost function Joff, given in (68), behaves. For this simulation we
pre-multiply Wk after every iteration with a diagonal matrix, such that the rows of
Wk have unit norm, i.e., diag(Wk WH

k)=I3. This normalization step does not affect
the value of the cost function J , as J is scale invariant to such an operation, however,
it is important for a meaningful interpretation of Joff. Without this normalization
a small value of Joff could also be caused by ‖Wk ‖F ≪ 1, which would lead to a
misleading performance interpretation. From the simulation curves it is clearly seen
that once the Newton algorithm approaches the vicinity of a minimum, it reveals a
superlinear convergence and attains the minimum within a few steps.

5. Conclusion. The problem of joint-approximate diagonalization of a set of
positive definite matrices has become of great interest in blind signal separation ap-
plications. Most algorithms known for the joint-diagonalization task impose some
constraints on the diagonalization matrix W, namely that W needs to be (i) real, (ii)
unitary, or (iii) square. We have derived a Newton algorithm for this problem which
has none of these restrictions. We allow the diagonalization matrix W to be complex,
non-unitary, and even rectangular.

The most general case where the diagonalization matrix W can be rectangular,
instead of being square, is of particular interest in blind signal separation. This
scenario occurs when access to more sensor signals than source signals is available.
In this case the correlation matrices Rp are no longer positive definite, they only
will be positive semi-definite. Algorithms that use the same cost function as given in
(4), but constraint W to be square, require that Rp are positive definite, otherwise
det

(
WRp WH

)
becomes zero. Since our algorithm can also update a rectangular

M ×N matrix W, where M ≤ N , we impose a much weaker constraint, namely that
the product WRp WH needs to be positive definite and not Rp. For a given set
of {Rp} we can simply achive this by reducing M, the number of rows of W, until
{WRp WH} has full rank for all p.

A major contribution of this paper is the derivation of the Hessian in closed
form for every W and not only at the critical points. It turned out that the matrix
form of the Taylor-series expansion (12), as given by Manton in [13], has provided

Newton Method for Joint Approx. Diagonalization 13

the fundament in this derivation. This form preserves the matrix structure of the
underlying problem which allows a compact-form representation of the gradient and
Hessian through matrix- and Kronecker products. Finally, we have shown that there
exists a close similarity between the gradient and Hessian of two commonly used cost
functions for the joint-diagonalization problem.

Appendix A. Useful relations for deriving the gradient and Hessian of

a matrix-valued cost function.

The following equalities were very useful for the derivation of the gradient and
Hessian. Some basic relations are

‖A ‖
2
F = tr(AAH) (81)

tr (AB) = tr (BA) (82)

tr
(
AH

)
= tr (A∗) = (tr (A))

∗

. (83)

Furthermore, we have some useful equalities with the vec(.) operation and Kronecker
product [3] with Z ∈ CM×N :

vec(ZT) = PM×N vec(Z) (84)

tr(ZHA) = vec(Z)H vec(A) (85)

tr (ZA) = vec(ZT)T vec(A) (86)

= vec(Z)T PT
M×N vec(A) (87)

(A ⊗ B)T = AT ⊗ BT (88)

(A ⊗ B)H = AH ⊗ BH (89)

(A ⊗ B)−1 = A−1 ⊗ B−1 (90)

(AB⊗ CD) = (A ⊗ C)(B⊗ D) (91)

AP×Q ⊗ BR×S = PP×R (B⊗ A)PS×Q (92)

vec(AZB) = (BT ⊗ A) vec(Z) (93)

where the permutation matrix PM×N is uniquely defined with (84). Sometimes
PM×N is called the commutation matrix [12]. Since PM×N is a permutation ma-
trix, PM×N =PT

N×M =P−1
N×M . For the special case where M =N , the commutation

matrix is involutary, P2
M×M = I, as PT

M×M = PM×M is symmetric. See [3, 12] for a
thorough list of properties of Kronecker products.

The following relations, where Z1,Z2 ∈ CM×N and the argument of tr (.) is a
square matrix, have been proven to be very useful in the derivation of the Hessian:

tr (Z1 AZ2 B) = vec(Z1)T PT
M×N (BT ⊗ A) vec(Z2) (94)

tr
(
ZH

1 AZ2 B
)

= vec(Z1)H (BT ⊗ A) vec(Z2) (95)

tr
(
ZH

1 AZH
2 B

)
= vec(Z1)H (BT ⊗ A)PM×N vec(Z2)∗ . (96)

Eq. (95) can be derived with (85) and (93). Eq. (94) and (96) can be derived with
(85), (93), (87), and (83).

14 M. JOHO

Appendix B. Armijo rule for matrix form.

The Armijo rule for choosing a step size µk at the kth iteration is defined as
µk = µ0 γm where m is the first nonnegative integer that fulfills

J (Wk) − J (Wk + µ0 γm Sk) ≥ −η µ0 γm
Re{〈Sk,DWk〉} (97)

The search direction and the gradient of J at Wk are denoted as Sk and DWk,
respectively, and 〈Sk,DWk〉 , tr

(
SH

k DWk

)
defines an inner product between Sk and

DWk.

Acknowledgment. The author would like to thank Pascal Vontobel for helpful
discussions and the anonymous reviewers for insightful comments and suggestions.
They all helped to improve this paper.

REFERENCES

[1] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, A blind source sep-

aration technique using second-order statistics, IEEE Transactions on Signal Processing,
45 (1997), pp. 434–444.

[2] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 2nd ed., 1999.
[3] J. W. Brewer, Kronecker products and matrix calculus in system theory, IEEE Transactions

on Circuits and Systems, 25 (1978), pp. 772–781.
[4] J.-F. Cardoso and A. Souloumiac, Blind beamforming for non Gaussian signals, IEE

Proceedings-F, 140 (1993), pp. 362–370.
[5] J. F. Cardoso and A. Souloumiac, Jacobi angles for simultaneous diagonalization, SIAM

Journal on Matrix Analysis and Applications, 17 (1996), pp. 161–164.
[6] R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, 2nd ed., 1987.
[7] B. Flury, Common principal components in k groups, J. Amer. Statist. Assoc., 79 (1984),

pp. 892–897.
[8] B. Flury and W. Gautschi, An algorithm for simultaneous orthogonal transformation of

several positive definite symmetric matrices to nearly diagonal form, SIAM Journal on
Scientific and Statistical Computing, 7 (1986), pp. 169–184.

[9] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1990.
[10] M. Joho and K. Rahbar, Joint diagonalization of correlation matrices by using Newton

methods with application to blind signal separation, in IEEE Sensor Array and Multichannel
Signal Processing Workshop, Rosslyn, VA, August 4–6, 2002, pp. 403–407.

[11] D. G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, 2nd ed., 1989.
[12] J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics

and Econometrics, John Wiley & Sons, 2nd ed., 1999.
[13] J. H. Manton, Optimisation algorithms exploiting unitary constraints, IEEE Transactions on

Signal Processing, 50 (2002), pp. 635–650.
[14] D. T. Pham, Joint approximate diagonalization of positive definite hermitian matrices, SIAM

Journal on Matrix Analysis and Applications, 22 (2001), pp. 1136–1152.
[15] E. Polak, Optimization: Algorithms and Consistent Approximations, Springer Verlag, 1997.
[16] R. Vollgraf and K. Obermayer, Quadratic optimization for simultaneous matrix diagonal-

ization, IEEE Transactions on Signal Processing, 54 (2006), pp. 3270–3278.
[17] A. Yeredor, Non-orthogonal joint diagonalization in the least-squares sense with application

in blind source separation, IEEE Transactions on Signal Processing, 50 (2002), pp. 1545–
1553.

[18] , On using exact joint diagonalization for noniterative approximate joint diagonalization,
IEEE Signal Processing Letters, 12 (2005), pp. 645–648.

[19] A. Yeredor, A. Ziehe, and K. R. Müller, Approximate joint diagonalization using a natural-

gradient approach, in Proc. International Conference on Independent Component Analysis
and Blind Signal Separation (ICA), Granada, Spain, September 22–24, 2004, pp. 89–96.

[20] A. Ziehe, P. Laskov, and K.-R. Müller, A fast algorithm for joint diagonalization with

non-orthogonal transformations and its application to blind source separation, Journal of
Machine Learning Research, (2004), pp. 777–800.

