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Abstract

In many situations related to acoustics and data communications we are con-
fronted with multiple signals received from a multipath mixture, e.g., the fa-
mous cocktail-party problem. A multipath mixture can be described by a mix-
ing matrix, whose elements are the individual transfer functions between a
source and a sensor. The mixing matrix is usually unknown, and so are some-
times also the source signals.

Depending on the application, different parameters are of interest: the mix-
ing matrix for system identification, the inverse mixing matrix for inverse mod-
eling, or the source signals for system equalization. This thesis gives a sys-
tematic approach to the aforementioned problems in a multipath mixing envi-
ronment. To this end, we investigate the multichannel-mixing problem and the
single-channel multipath problem separately.

Based on a mean-squared-error (MSE) cost function, several stochastic-
gradient update equations, which are related to the least-mean-square (LMS)
and the recursive least-squares (RLS) algorithm, are derived for the instanta-
neous mixing case. Thereby the matrix-inversion lemma has shown to be a
very powerful tool to transform an algorithm which estimates the mixing ma-
trix (system identification) into an algorithm which estimates the inverse mix-
ing matrix (inverse modeling).

With the help of circulant matrices, the adaptive algorithms for the mul-
tichannel instantaneous mixing case are transformed to cope with the single-
channel multipath case. Block processing techniques are used, allowing effi-
cient implementation of the filtering and adaptation in the frequency domain.
The Fast Fourier Transform (FFT) plays a crucial role, owing to its close rela-
tionship to circulant matrices.

v



vi Abstract

We extend the algorithms to operate as multichannel adaptive filters, using
the fact that a multipath mixture is the combination of instantaneous mixing
and single-channel multipath convolution.

In addition, we investigate the situation where not only the multipath-mixing
system, but also the source signals are unknown. This situation is referred to as
blind identification. By exchanging the non-blind error criterion with a blind
error criterion, we derive new algorithms for blind identification (blind source
separation, single-channel and multichannel blind deconvolution). The same
technique provides an alternative derivation of the well-known natural-gradient
learning algorithm for blind source separation, revealing new insight.

Throughout the thesis, many simulation examples illustrate the performance
behavior of the different adaptive algorithms.

Keywords. Multichannel adaptive signal processing, multichannel adaptive
filtering, system identification, inverse modeling, system/channel equalization,
blind identification, blind source separation, blind deconvolution, multichannel
blind deconvolution, acoustical signal processing, multipath mixture.

Kurzfassung

In der Akustik und in der Datenkommunikation hat man es oft mit echobe-
hafteten und vermischten Signalen zu tun, zum Beispiel mehrere Sprecher in
einem halligen Raum oder Mehrwegausbreitung in Mobilfunkkan¨alen. Ein
solches mehrkanaliges̈Ubertragungssystem kann mit einer Mischmatrix be-
schrieben werden, deren Elemente dieÜbertragung zwischen den Sendern und
den Empfängern beschreiben, zum Beispiel mittels einer Impulsantwort. Diese
mehrkanaligeÜbertragungsmatrix ist normalerweise nicht bekannt. In eini-
gen Anwendungen sind sogar die ausgesendeten Signale (Quellensignale) un-
bekannt. Abh¨angig von der Anwendung interessiert man sich f¨ur die Schätzung
von verschiedenen Parametern: In der Systemidentifikation f¨ur die Schätzung
der Übertragungsmatrix oder deren Inverse, bei einer Kanalentzerrung f¨ur die
Schätzung der ¨ubertragenen Datensignale.

Die vorliegende Dissertation analysiert die obigen Problemstellungen in ei-
ner systematischen Weise. Dazu wird das allgemeine Problem auf zwei unter-
schiedliche Arten vereinfacht, die zuerst getrennt untersucht werden. Es sind
dies eine einfache Signalmischung und ein einfacher Kanal mit Mehrwegaus-
breitung.

Basierend auf einem quadratischen Fehlerkriterium leiten wir verschiedene
stochastische Gradientenmethoden her, um eine unbekannte Mischmatrix zu
schätzen. Diese Methoden weisen eine grosse Verwandtschaft mit dem LMS-
(least-mean-square) und dem RLS- (recursive-least-squares) Algorithmus auf.
Das Matrix-Inversions-Lemma hat sich dabei als sehr n¨utzliches Hilfsmittel
erwiesen, um einen Sch¨atzalgorithmus f¨ur die Mischmatrix in einen effizienten
Schätzalgorithmus f¨ur die inverse Mischmatrix umzuwandeln.

Adaptive Filteralgorithmen f¨ur die einkanalige Kanalsch¨atzung und Kana-
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legalisation werden hergeleitet. Es wird eine blockweise Verarbeitung der Ein-
gangsdaten verwendet, welche eine effiziente Implementation der Filterung und
Adaption im Frequenzbereich erlaubt. Dabei wird die enge Verwandtschaft
zwischen der schnellen Fourier Transformation (FFT) und zirkul¨aren Matrizen
ausgenutzt.

Die Algorithmen werden f¨ur eine mehrkanalige adaptive Filterung erwei-
tert, indem die Methoden f¨ur die mehrkanalige Mischung mit denjenigen der
einkanaligen Filterung vereinigt werden.

Zusätzlich wird der Fall der blinden Systemidentifikation untersucht, bei
der weder diëUbertragungsmatrix noch die Quellensignale bekannt sind. Durch
Auswechseln des Fehlerkriteriums lassen sich Algorithmen f¨ur die mehrkana-
lige adaptive Filterung in solche umwandeln, die sich f¨ur die blinde Quellen-
separation und R¨uckfaltung eignen. Mit dem selben Vorgehen l¨asst sich der
Algorithmus des nat¨urlichen Gradienten, der in der blinden Quellenseparation
weit verbreitet ist, auf eine neue Weise herleiten.

Das Adaptionsverhalten der verschiedenen Algorithmen wird mittels Simu-
lationsbeispielen aufgezeigt.

Stichworte. Mehrkanalige adaptive Signalverarbeitung, Systemidentifikati-
on, Kanalentzerrung, blinde Quellenseparation, blinde Kanalentzerrung, Si-
gnalverarbeitung von akustischen Signalen, Mehrwegausbreitung.
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Chapter 1

Introduction

1.1 Preface

Multichannel signal processing is a challenging field in data communications,
acoustics, geophysics, biomedical applications, data fusion, fault-detecting sys-
tems, and many other application areas. Since the early sixties, when the
Kalman filter was invented and Widrowet al. introduced the least-mean-square
(LMS) algorithm, a tremendous growth of applications using adaptive signal
processing in various fields was observed. One of the first to apply the LMS
algorithm in data communication for channel equalization was Lucky [76].

Later on, blind algorithms, which do not have access to any reference sig-
nal, came up in data communications for channel equalization [11, 12, 41, 91].
Blind deconvolution techniques were also used in geophysical applications
[26, 42, 110]. In geophysics the termblind deconvolutionis more common,
as the interest mainly lies in obtaining a model of the system, whereas in data
communications the termblind equalizationis more commonly used, as the
main interest lies in retrieving the data.

Algorithms forblind source separationor independent component analysis
(ICA) [21] came later. Jutten, H´erault, and Comon [22, 64] were among the
first to describe the problem. Early work was also done by Shalvi and Wein-
stein [95] and Weinsteinet al. in [112]. Later on, Bell and Sejnowski came up

1
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with the Infomaxalgorithm [7]. The introduction of thenatural gradientby
Amari et al. [4] or the relative gradientby Cardoso and Laheld [17] provided
a new class of algorithms, which have the so-calledequivariant property, i.e.,
the convergence rate is independent of the conditioning of the unknown mixing
system. The systematic extension of most known blind source separation algo-
rithms to theirmultichannel blind deconvolutioncounterpart was done by Lam-
bert [69] using FIR-matrix algebra. Douglas and Haykin showed in [33,34] the
structural relationship between blind deconvolution and blind source separation
under the circulant mixing condition, which is also a subject of this thesis.

In the last few years, blind algorithms have attracted many researchers in the
field of adaptive signal processing, neural networks, and higher-order statistics.

Applications in acoustics Main applications in acoustics are: Man-machine
interface [66], acoustic noise canceler, adaptive microphone arrays, echo can-
cellation in hands-free telephone and hearing aids, multichannel echo cancel-
lation and speaker separation in teleconferencing, active noise control, dere-
verberation of acoustical signals, beam steering of loudspeaker arrays, head
related transfer functions (HRTF), crosstalk cancellation, removal of multipath
in sonar systems, and many others.

Applications in data communications Main applications in data communi-
cations are: Smart antennas or adaptive beamforming, single- and multichannel
equalization, multi-user separation (e.g. CDMA), adaptive line enhancement,
etc.

Further reading Textbooks which cover many aspects of single-channel and
multichannel adaptive signal processing are [20,44,51,58]. An overview of the
field of blind or unsupervised learningcan be found in [3,16,52,53,72,83,90,
106].
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1.2 Problem formulation

1.2.1 Description of the unknown system

In the following, we restrict ourselves to linear systems and assume that the
unknown multiple-input multiple-output (MIMO) system can be described by a
matrixA(z), whose elementsaij(z) contain the impulse response between the

jth input and theith output in the two-sidedz-domain.Ms denotes the number
of system inputs andM the number of system outputs. Thus, theM � Ms

transfer matrix of the system is defined as

A(z) =

1X
n=�1

Anz
�n = [aij(z)] (1.1)

aij(z) =

1X
n=�1

aij;nz
�n i = 1; : : : ;M

j = 1; : : : ;Ms .
(1.2)

We assume that each system is stable, i.e.

P1
n=�1 jaij;nj <1. The left hand

side of (1.1) represents apolynomial matrixor aLaurent-series matrix(a ma-
trix whose elements are polynomials, power series, orLaurent series) and the
right hand side is referred to as amatrix polynomialor amatrix Laurent series
(a polynomial or a Laurent series whose coefficients are matrices) [65].Polyno-
mial vectorsandvector polynomialsare defined accordingly. In fact, the formu-
lation in (1.1) describes a non-causal system. However, we will treat a causal
system as a special case of a non-causal system, i.e.,A(z) =

P1
n=0Anz

�n.

Aside from the non causality and the infinite extent of the impulse re-
sponses, the description (1.1) is common in the field of acoustics and com-
munications. In other applications which are related to control theory, usually
a state-space model is preferred, especially if a physical model based on differ-
ential equations is available [75].

1.2.2 Environment

The environment, which the systemA(z) is embedded in, is shown in Fig. 1.1.
The generalconvolutive-mixing systemwith additive noise is described in the

z-domain as

x(z) = A(z)s(z) + n(z) . (1.3)
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xs

n

A

Figure 1.1: Setup of the mixing system with additive noise.

We haveMs source signals, whose time series are represented by their two-
sidedz-transforms in vector form

s(z) =

1X
t=�1

stz
�t = [sm(z)] (1.4)

sm(z) =

1X
t=�1

sm;tz
�t m = 1; : : : ;Ms . (1.5)

Likewise, the time series of theM sensor signals are represented as

x(z) =

1X
t=�1

xtz
�t = [xm(z)] (1.6)

xm(z) =

1X
t=�1

xm;tz
�t m = 1; : : : ;M (1.7)

and the time series of the sensor noise as

n(z) =

1X
t=�1

ntz
�t = [nm(z)] (1.8)

nm(z) =

1X
t=�1

nm;tz
�t m = 1; : : : ;M . (1.9)

Alternative description Equivalent ways to describe the noisy mixing pro-
cess are either by a convolutional sum

xt = (A � s)t + nt (1.10)

=

1X
k=�1

At�k sk + nt (1.11)

or with help of the delay operatorq�1, e.g.,q�dxt = xt�d [44,75],

xt = A(q) st + nt . (1.12)
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Assumptions In all cases, we assume that we have full access to the sensor
signals. The sensor noise is always unknown. Furthermore, in a system identi-
fication and inverse-modeling setup, we also have access to the source signals.
However, in a blind system-identification setup, we only know some statistical
properties of the source signals, e.g., non-Gaussianity, but not the source signals
themselves, therefore the terminologyblind. Furthermore,A(z) is unknown.

Problem formulation Throughout this thesis, we aim at finding an estimate

^A(z) or ^A�1(z) of the unknown systemA(z). We have access to the time
samples of sensorsxt and, in the non-blind case, also to the time samples of
the sourcesst.

1.2.3 Special cases

Depending onA(z), we can subdivide the general convolutive-mixing system
into several special cases:

1. Instantaneous mixing system

A(z) = A . (1.13)

2. Delayed instantaneous mixing system

A(z) = z�dA . (1.14)

3. Individually delayed source signals with instantaneous mixing

A(z) = AD(z) (1.15)

D(z) =
�
z�dij

�

(1.16)

or D(z) = diag
�
z�d1 ; : : : ; z�dMs

�

. (1.17)

4. Instantaneous mixing with individually delayed sensor signals

A(z) = D(z)A . (1.18)
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a

spatial extension��������! A

temporal extension

??y ??ytemporal extension

a(z) ��������!

spatial extension

A(z)

Figure 1.2: Commutative diagram which reveals the relationship between con-
volution and mixing:a attenuation,a(z) convolution,A instanta-
neous mixing, andA(z) convolutive mixing.

5. Delay-and-sum system1

A(z) =
�
z�dij

�
D (1.19)

with D = diag [d1; : : : ; dMs] . (1.20)

6. Single-channel convolution

A(z) = a(z) . (1.21)

7. Signal attenuation

A(z) = a . (1.22)

Fig. 1.2 illustrates the relationship between single-channel and multichannel
convolution on the one side, and instantaneous and convolutive mixing on the
other side.

Furthermore, depending on the dimension ofA(z)M�Ms, we distinguish
between the following cases for inverse modeling and blind identification:

� fully determined system(M =Ms): We have an equal number of sources
and sensors anddetA(z) has no roots on the unit circle. This means that

A
�
ej!

�

is of full rank for�� < ! � �.

� overdetermined system(M >Ms): More sensors than sources.

� underdetermined system(M <Ms): Fewer sensors than sources.

1This model is often used in beamforming applications, if the sensors have equal gain and the
sources are located in the far field. Thejth column ofA(z) is just thesteering vectorfor thejth
source.
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1.3 System identification

In system identificationwe wish to directly find an estimateH(z) = ^A(z) of
the unknown system

H(z) =

1X
n=�1

Hnz
�n = [hij(z)] (1.23)

hij(z) =

1X
n=�1

hij;nz
�n i = 1; : : : ;M

j = 1; : : : ;Ms
(1.24)

such that

^x(z) = H(z) s(z) (1.25)

becomes an estimate ofx(z). The estimation or prediction error is then

ex(z) , x(z)� ^x(z) (1.26)
= [A(z)�H(z)] s(z) + n(z) . (1.27)

We aim at finding aH(z) such as to minimize

kex(z)k2F = k[A(z)�H(z)] s(z) + n(z)k2F (1.28)

= k[A(z)�H(z)] s(z)k2F + kn(z)k2F (1.29)

= Ms�
2

s kA(z)�H(z)k2F +M �2n . (1.30)

In these steps, we have assumed that the sensor noise and the source signals
are mutually uncorrelated, i.e.hs(z);n(z)iF = 0, that all source signals have
equal power�2s , and that all noise signals have equal power�2n . The inner
producth:; :iF and the normk:kF are defined in Section C.2 and Section C.3,
respectively. As seen from (1.30), minimizingkex(z)k2F is equal to minimizing

kA(z)�H(z)k2F , as we have no influence on�2n . Therefore, in an iterative or
adaptive algorithm, we use the error signalext to adaptH(z), as depicted in
Fig. 1.3.

1.4 Inverse modeling

In inverse modelingwe wish to find an estimate of the inverse system,W(z)=

^A�1(z), or find an estimate of the pseudoinverse, defined in Section A.8, of
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Figure 1.3: System identification. The prediction errorex is used for the adap-
tation.

the unknown system, i.e.W(z) = ^A#(z)

W(z) =

1X
n=�1

Wnz
�n = [wij(z)] (1.31)

wij(z) =

1X
n=�1

wij;nz
�n i; j = 1; : : : ;M (1.32)

such that theglobal systemmatrix

G(z) ,W(z)A(z) (1.33)

becomes close to the unity matrixI and

u(z) =W(z)A(z)s(z) =G(z)s(z) (1.34)

becomes an estimate ofs(z). Thus, we build theequalization erroras

es(z) , s(z)� u(z) (1.35)

= [ I�W(z)A(z)] s(z)�W(z)n(z) (1.36)

= [ I�G(z)] s(z)�W(z)n(z) (1.37)

which is taken for the adaptation ofW(z), as depicted in Fig. 1.4. The corre-
sponding cost function is

kes(z)k2F = k[ I�W(z)A(z)] s(z)�W(z)n(z)k2F (1.38)

= k[ I�W(z)A(z)] s(z)k2F + kW(z)n(z)k2F (1.39)

=M �2s k I�W(z)A(z)k2F +M �2n kW(z)k2F . (1.40)

1.4. Inverse modeling 9

n

es

xs u
WA

Figure 1.4: Inverse modeling or channel equalization. The equalization error

es is used for the adaptation.

Again, we have assumed that the sensor noise and the source signals are mutu-
ally uncorrelated, i.e.hs(z);n(z)iF = 0, all source signals have equal power

�2s , and all noise signals have equal power�2n .

Depending on the application, in fact, we can choose between two differ-
ent cost functions to minimize. We can either search for the minimum mean-
squared error (MMSE) solutionWMMSE(z), which minimizes (1.40), or search
for the so-called zero-forcing (ZF) solutionWZF(z), which minimizes only the
first term of (1.40), namelyk I�W(z)A(z)k2F . In the noiseless case, we have

WMMSE(z) = WZF(z). In data communications, the MMSE solution is usually
preferred, as one is rather interested in estimating the data than obtaining an
exact model of the inverse channel, whereas in other applications, e.g. geo-
physical prospecting, one is more interested in an exact model or inverse model
of the channel.

Phase property ofA(z) We introduce the following definitions for anM �

M polynomial matrixA(z):

� A(z) is calledminimum phaseif all zeros ofdetA(z) lie inside the unit
circle.

� A(z) is calledmaximum phaseif all zeros ofdetA(z) lie outside the
unit circle.

� A(z) is calledmixed phaseif the zeros ofdetA(z) lie on both sides of
the unit circle.
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The case where the system is either maximum or mixed phase is referred to as
non-minimum phase. We exclude the case where zeros lie on the unit circle, as
such a system is not invertible over the whole frequency range�� < 
 � �.

Inversion of a polynomial matrix A fundamental problem arises if we wish
to invert a nonminimum-phase system. Since the elements ofA(z) are poly-
nomials, the elements ofA�1(z) are rational polynomials and therefore have
poles, see (A.15). Since we approximate the elements ofA�1(z) with all-zero
filterswij(z), we expand the poles of[A�1(z)]ij into an infinite-length impulse
response.

A pole outside the unit circle can either be expanded such that the resulting
impulse response becomes causal but unstable, or non-causal but stable.Stabil-
ity can be exchanged with non-causality.We are interested in a stable inverse,
even if we end up with a non-causal systemH(z). As a consequence, ifA(z)

in nonminimum phase, we end up with a non-causalH(z).

In a practical application, where the number of coefficients is limited any-
way, we can introduce a delay into the system such that the non-causal part
becomes causal again. Hence, we replace (1.35) by

es(z) = z�d s(z)� u(z) (1.41)

and in analogy to (1.40), derive the new MSE cost function

kes(z)k2F =M �2s



 z�d I�W(z)A(z)


2

F

+M �2n kW(z)k2F . (1.42)

Consequently, the zero-forcing solution then becomesW(z) = z�dA�1(z)

orW(z) = z�dA#(z), depending on the dimension ofA(z).

1.5 Blind identification

In the so-called blind identification problem, we have an inverse-modeling
problem, except that we have no access to the source signalss(z). The al-
gorithm isblind to the source signals. We distinguish between the following
blind problems:

1.5. Blind identification 11

� Blind source separation(BSS)
The unknown system is described by a mixing matrixA which is an
ordinary matrix with scalar elements.

� Blind deconvolution(BD)
The unknown system is described by a single polynomiala(z), repre-
senting thez-transformed impulse responsefang.

� Multichannel blind deconvolution(MCBD)
The unknown system is described by a polynomial matrixA(z). This is
the combination of blind source separation and blind deconvolution.

� Automatic gain control(AGC)
AGC belongs to the degenerated case of BSS and BD, where the un-
known system is described by a single scalara. For a complex gaina

and a complex source signal, under certain conditions phase corrections
up to a multiple of�=2 can be achieved. We then have automatic gain
andphase control.

The relationship between the different blind problems is depicted in Fig. 1.5.

Since we have no access to the source signalss(z), we cannot build the
error signales. Hence, we have to estimate eithers(z) or es somehow, or find
an alternative error criterion. A common choice for a blind error signal is [9,71]

eb(z) = u(z)� y(z) (1.43)

AGC
spatial extension��������! BSS

temporal extension

??y ??ytemporal extension

BD ��������!

spatial extension
MCBD

Figure 1.5: Commutative diagram to reveal the relationship between the dif-
ferent blind problems.
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Figure 1.6: Blind identification. The blind erroreb is used for the adaptation.

with

y(z) =

1X
t=�1

ytz
�t = [ ym(z) ] (1.44)

ym(z) =

1X
t=�1

ym;tz
�t m = 1; : : : ;Ms (1.45)

ym;t = gm(um;t) . (1.46)

ym;t is a nonlinear function of the output signalum;t. The choice of the mem-
oryless nonlinearitygm(:), also known as theBussgang nonlinearity, depends
on pSm(sm), the pdf of the unknown source signalsm. If the pdf pS(s) of a
source signal is known, thescore function[16], defined as

g(u) = � @
@u

ln pS(u) = �
@
@upS(u)

pS(u)

(1.47)

is usually the preferred choice, justified from maximum-likelihood estimation
theory. However, the exact choice of the nonlinearity is not very crucial for
the performance of most blind algorithms. In fact, the knowledge whether the
pdf of a source signal is super-Gaussian (more peaky than a Gaussian pdf) or
sub-Gaussian (flatter than a Gaussian pdf) is usually sufficient for the choice of
the nonlinearity.

1.6 Semi-blind identification

In a semi-blind setup we refer to the situation where some parts of the source
signals are known. We distinguish between spatial and temporal semi-blind
problems:

1.6. Semi-blind identification 13

s b3s b1

s b2

x2

s r1
s r2

x5x4

x3x1

Figure 1.7: Teleconferencing setup. The five sensor signalsx1 to x5 capture
a mixture of several audio signals stemming from three speakers
(unknown source signalssb1 to sb3), and two loudspeaker signals
(accessible source signalssr1 andsr2). The objective is to retrieve
the unknown source signalssbm. If a blind-only algorithm is used,
all five sensor signals are required, as a blind algorithm does not
distinguish between known and unknown source signals. A semi-
blind algorithm which makes use of the known source signals re-
quires only three sensors.

� Some of the source signals are known. This situation appears e.g. in a
teleconferencing setup, see Fig. 1.7. We have the situation, where some
of the source signals are accessible, and therefore do not have to be sep-
arated from the mixture. The known source signals can either be directly
incorporated in the update equation asvirtual sensors[61], or, in an echo-
canceler preprocessing step, be subtracted from the sensor signals [59].
Moreover, every known source signal reduces the number of required
sensors for the separation by one. Other algorithms which cope with this
situation are given in [92–94].

� In communications, training sequences are usually embedded in the data
stream to allow a training-based equalization of the channel. During
the actual data transmission, the adaptive channel equalizer operates in a
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fully blind or decision-directed mode, depending on the current quality
of the equalization [45,108,111].

1.7 Overview

In this thesis we derive several algorithms for single-channel and multichannel
adaptive filtering. First we analyze the non-blind case, where we derive up-
date rules for the system-identification and for the inverse-modeling problem.
Afterwards, based upon the concepts of the non-blind case, we modify the al-
gorithms to be applicable to a blind environment. The thesis is structured as
follows:

chapter 1 In this chapter the general problem description is introduced in a
mathematical context. Furthermore, some special cases of the general
problem are given.

chapter 2 In this chapter we deal with the instantaneous mixing problem.
Based on a quadratic error criterion, several gradient and Quasi-Newton-
type algorithms are derived for multichannel identification and multi-
channel equalization, which are related to LMS and RLS algorithms.

chapter 3 In this chapter the basic tools from Linear Algebra which build the
basis for deriving efficient blind and non-blind adaptive algorithms are
introduced. The Fourier matrix, circulant matrices, and block circulant
matrices play a major role in transforming the filtering and the update
of the coefficients into the frequency domain. Moreover, the isomorphic
mapping between convolution, multiplication of polynomials, and multi-
plication of circulant matrices are shown, which build the key concept for
the extension of the instantaneous mixing case to the convolutive mixing
case.

chapter 4 Here we consider the single-channel system-identification and
inverse-modeling problem, where the unknown system consists of a sin-
gle filter. With the help of the mathematical tools described in Chap-
ter 3, we transform the update rules from Chapter 2 to work with the
convolutive-mixing case. Furthermore, efficient implementations of the
algorithms in the frequency domain are given.

1.7. Overview 15

chapter 5 In this chapter we focus on algorithms for multichannel system iden-
tification and inverse modeling. We combine the concepts of the multi-
channel instantaneous-mixing problem from Chapter 2 with the concepts
of the single-channel filtering problem from Chapter 4, and derive algo-
rithms for the multichannel convolutive-mixing problem.

chapter 6 Based on the methods for the described non-blind problems and by
exchanging the non-blind error criterion by a blind error criterion, we can
easily obtain algorithms which are suitable for blind source separation
(BSS), blind deconvolution (BD), and multichannel blind deconvolution
(MCBD).

appendix 1 Summary of some useful mathematical tools.

appendix 2 Properties of the trace operation.

appendix 3 Extension of the Frobenius norm to polynomial matrices.

appendix 4 The definitions of the generalized remainder and the polynomial
projection operators are given, together with many of their properties.

appendix 5 Summary of update equations for system identification, inverse
modeling, and blind identification.

appendix 6 MATLAB implementation of a single-channel blind deconvolution
algorithm in the frequency domain.



Chapter 2

System identification and
inverse modeling of an
instantaneous mixing system

In this chapter we derive several adaptive algorithms for system identification
and inverse modeling (inverse-system identification) of an instantaneous mix-
ing system. An instantaneous mixing system can be seen as a special case of
multichannel system identification or multichannel inverse modeling where the
unknown system has no dynamics (memoryless system), and can therefore be
described by an ordinary matrix, whose elements are scalars. The purpose is
hereby to gain a first insight into the behavior of a general multichannel algo-
rithm and its properties. Furthermore, as will be seen in Chapter 6, the analysis
and understanding ofnon-blindalgorithms helps in the development ofblind
algorithms and in the improvement of their convergence rate.

In this chapter we derive two Wiener solutions based on different error cri-
teria. From the Wiener solutions, we develop several LMS and RLS update
equations, which are summarized in Table E.3 and E.7 in Appendix E. The
matrix-inversion lemma, which is given in Appendix A.3, plays a key role in
the transformation of an algorithm which is applicable for system identification
into one for inverse modeling, and vice versa. As a result, we will see that many
known blind algorithms also have non-blind counterparts.

17
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2.1 Unknown mixing system

Since we consider an instantaneous (memoryless) mixing system, we can de-
scribe the unknown system by a mixing matrix with scalar elements, also shown
in Fig. 1.1

xt = Ast + nt . (2.1)

The mixing matrixA and the noise vectornt are unknown, the signal vectors

st andxt are known fort � 0. The task is now to find an estimate ofA,
i.e.H = ^A, or an estimate ofA�1, i.e.W = ^A�1, based on the knowledge
of the system inputst and system outputxt. The first task is referred to as
system identificationand the second one asinverse modelingor inverse-system
identification. As we will see in this chapter, the algorithms for these tasks can
have quite a different performance behavior, although they actually pursue the
same objective.

2.2 System identification

xt

nt

ext

st

x̂t

A

Ht

Figure 2.1: System identification. The error signalex is used for the adapta-
tion.

In system identificationwe try to find a matrixHwhich is “close” to the true
systemA, see Fig. 2.1. “Closeness” can be measured in different ways. For
example it could be defined bykA �HkF . However, by assumption there is
no access to the true matrixA, therefore closeness is usually defined in system
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identification as a function of the prediction or estimation error

ext , xt � ^xt (2.2)

where

^xt = Htst (2.3)

is the estimation of the output of the unknown mixing system.H can be either
estimated by a batch algorithm, or by an online learning algorithm. A batch
algorithm uses at discrete timet all the past input and output time samples for
the new estimateHt+1, whereas an online algorithm uses at timet only st, xt,
and the current estimateHt to evaluateHt+1.

2.2.1 Wiener solutionHMMSE-x

We now wish to find the Wiener or minimum mean-squared error (MMSE)
solutionHMMSE-x, which minimizes the cost function

JMSE-x , E
�kexk22
	
= tr fRexexg (2.4)

where
Rexex , E

�
exe
H

x

	
= E

n
(x� ^x) (x� ^x)

H
o

(2.5)

= Rxx �HRsx �RxsHH +HRssH
H (2.6)

is the error covariance matrix,Rss , E
�
ssH

	

, Rsx , E
�
sxH

	

, Rxs ,

E
�
xsH

	

, andRxx , E
�
xxH

	

. Towards this end, we build the gradient of
the cost function with respect to the matrixH

rHJMSE-x = rH tr fRexexg = �2Rxs + 2HRss (2.7)

where we usedrH = 2 @
@H� , see [51] Eq. (B.18). By settingrHJMSE-x equal

to 0 and solving forH, we finally obtain the MMSE or Wiener solution

HMMSE-x = RxsR
�1
ss . (2.8)

Alternatively, we can also derive the Wiener solution by using theorthog-
onality principle1 which says that the estimation error has to be orthogonal to

1Two random complex variablesX andY with E fXg = E fY g = 0 are said to beorthogo-
nal if E fXY �g = 0.
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the input data

E
�
exs
H
	
= E

�
xsH

	�HE
�
ssH

	

(2.9)

= Rxs �HRss . (2.10)

By setting (2.10) equal to0 we obtain theWiener Hopf equation(WHE)

HRss = Rxs . (2.11)

Solving forH also givesHMMSE-x given in (2.8).

2.2.2 Batch learning

Since we usually do not know the true covariance matricesRxs andRss , we
can replace them by their estimates^Rxs and ^Rss , respectively. We can then
estimate the Wiener solution in (2.8) by

H = ^Rxs ^R
�1
ss . (2.12)

In a batch processing, we use all available measurements of the system to esti-
mate the correlation matrices

^Rxs =

1
T

TX
t=1

xts
H
t (2.13)

^Rss =

1
T

TX
t=1

sts
H
t . (2.14)

The number of samplesT needs to be large enough such that^Rss has full rank
and is therefore invertible.

2.3 LMS-x

For the derivation of a stochastic learning algorithm we first start with the
method ofsteepest descentwhere we iteratively updateH by following the
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negative gradient of the performance function

Ht+1 =Ht � �
2
rHJMSE-x (2.15)

=Ht + � (Rxs �HtRss) (2.16)

=Ht ( I� �Rss) + �Rxs (2.17)

=Ht + � (Rxs �R^xs) (2.18)

where� is the step size of the algorithm, which is properly chosen such that
convergence is guaranteed, i.e.,

0 < � <

2
kRssk . (2.19)

2.3.1 UpdatingH
LMS1-Hx Since the true correlation matricesRxs ,Rss , andR^xs are usually
unknown, we have to estimate them. The simplest way to do this is to replace
them by theirinstantaneous estimates, e.g. ^Rxs = xsH . By doing so, we
derive astochastic gradient algorithm

Ht+1 = Ht + � (x� ^x) sH (2.20)

which we refer to as LMS1-Hx. We call it LMS, because the algorithm is
derived analogously to theleast mean square algorithmused in adaptive filter-
ing [100]. The index H denotes the variable which is adapted and x denotes
that the underlying cost function which is to be minimized isJMSE-x.

LMS2-Hx In case we know thatRss = I, which is often assumed in a blind
setup, we obtain from (2.16)

Ht+1 =Ht + �
�
xsH �Ht

�

(2.21)

= (1� �)Ht + �xsH (2.22)

which we refer to as LMS2-Hx.Rxs was replaced by its instantaneous esti-
mate.
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2.3.2 UpdatingH�1

Either algorithm, LMS1-Hx and LMS2-Hx, can be modified such as to update
the inverse ofH, i.e.W , H�1, rather thanH itself. By doing so, we obtain
two new algorithms which can be used for inverse modeling.

LMS1a-Wx Starting with (2.20) and applying the matrix-inversion lemma
with A0 =Ht,B0 = � (x� ^x),C0 = 1, andD0 = sH , we derive

Wt+1 = [Ht+1]
�1
=

�
Ht + � (x� ^x) sH

��1

(2.23)

=Wt � �Wt (x� ^x)
�
1 + �sHWt (x� ^x)

��1
sHWt

=Wt + � (s� u) �1� �sH (s� u)��1 sHWt . (2.24)

Recall thatHt = W�1
t , Wtx = u andWt^x = H�1
t ^x = s. We refer to

this algorithm as LMS1a-Wx, which is, in fact, exactly the same algorithm as
LMS1-Hx, except thatH�1 is updated instead ofH.

LMS1b-Wx Again, we start with (2.23) and applying the matrix-inversion
lemma withA0 = Ht,B0 = � (x� ^x) sH ,C0 = I, andD0 = I, we derive

Wt+1 =Wt � �Wt (x� ^x) sH
�
I+ �Wt (x� ^x) sH

��1
Wt

=Wt + � (s� u) sH �I� � (s� u) sH��1Wt . (2.25)

We refer to this algorithm as LMS1b-Wx, which is exactly the same algorithm
as LMS1-Hx, except thatH�1 is updated instead ofH. Furthermore, this
algorithm is identical to the LMS1a-Wx. However, as we will see, there is a
difference in the convergence behavior, if the algorithm is updated in a block-
wise manner, as described in Section 2.9.

LMS2a-Wx In a similar way we can start with the inverse of (2.22)

Wt+1 = [Ht+1]
�1
=

�
(1� �)Ht + �xsH

��1

(2.26)

and apply the matrix-inversion lemma withA0 = (1� �)Ht,B0 = �x,C0 =

1, andD0 = sH , and after some calculations we finally obtain

Wt+1 =

1
1� �

�
I� �

1� �+ �sHu
usH

�
Wt (2.27)
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which we will refer to as LMS2a-Wx [59]. Both algorithms, LMS1a-Wx and
LMS2a-Wx belong to the class ofserial update algorithms, as they can be writ-

ten as a matrix productWt+1 = �WtWt =
�Qt

�=1�W�
�
W0 [17]. The

update�Wt is applied multiplicatively in the update equation and converges
towards the unity matrix. Note that the signal vectorx does not explicitly ap-
pear in these two update equations.

LMS2b-Wx In a similar way we can start with the inverse of (2.26) and apply
the matrix-inversion lemma withA0 = (1� �)Ht,B0 = �xsH , C0 = I, and

D0 = I, and after some calculations we finally obtain

Wt+1 =

1
1� �

 
I� �
1� �
usH

�
I+

�
1� �
usH

��1!
Wt

=

1
1� �

�
I� �usH

�
(1� �)I+ �usH

��1�
Wt

=
�
(1� �)I+ �usH

��1
Wt (2.28)

which we will refer to as LMS2b-Wx.

2.4 RLS-x

An alternative to the batch algorithm (2.12), where the correlation matricesRxs

andRss are estimated in (2.13) and (2.14) with the help of all available mea-
surement data, respectively, is to estimate the correlation matrices recursively

^Rxst =
^Rxst�1 + xts
H
t (2.29)

^Rsst =
^Rsst�1 + sts
H
t . (2.30)

We then obtain an online learning algorithm

Ht+1 = ^Rxst
^R�1
sst

(2.31)

which we will refer to as RLS1-x, as it is actually a recursive least squares
(RLS) algorithm which minimizes the cost function

~JMSE-x =

tX
�=0

kx� �Ht s�k22 (2.32)
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at discrete timet.

Note, ^Rxst from (2.29) and^Rsst from (2.30) are not consistent estimates
ofRxsandRss , respectively, as their norms grow with timet. However,Ht+1

from (2.31) is a consistent estimate ofHMMSE-x, as^Rxst and^Rsst grow with the
same rate.

2.4.1 RLS1-Hx

The matrix inversion in (2.31), which is carried out at every time instantt, is a
very demanding task. As we will now see, again with the help of the matrix-
inversion lemma, we can circumvent this matrix inversion. To this end, we
recursively update^R�1

sst

instead of^Rsst . By inverting both sides of (2.30) and

using the matrix-inversion lemma withA0 = ^Rsst�1 , B0 = st, C0 = 1, and

D0 = sHt we obtain

^R�1
sst
=

h
^Rsst�1 + sts
H
t

i�1

(2.33)

= ^R�1
ss � ^R�1
ss s

h
1 + sH ^R�1
ss s

i�1
sH ^R�1
ss (2.34)

= ^R�1
ss � ~�^R�1
ss ss

H ^R�1
ss (2.35)

~� =

1

1 + sH ^R�1
ss s

(2.36)
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where~� can be seen as a step size of the update. Next we use (2.34) to
modify (2.31) and find an efficient update forHt+1

Ht+1 = ^Rxst
^R�1
sst

(2.37)

=
�
^Rxst�1 + xts
H
t

�
^R�1
sst

=
�
^Rxs + xs
H
��
^R�1
ss � ^R�1
ss s

h
1 + sH ^R�1
ss s

i�1
sH ^R�1
ss

�

= Ht �Hts
h

1 + sH ^R�1
ss s

i�1
sH ^R�1
ss + xsH ^R�1
ss

� xsH ^R�1
ss s

h
1 + sH ^R�1
ss s

i�1
sH ^R�1
ss

= Ht �Hts
h

1 + sH ^R�1
ss s

i�1
sH ^R�1
ss

+ x
h

1 + sH ^R�1
ss s

i h
1 + sH ^R�1
ss s

i�1
sH ^R�1
ss

� xsH ^R�1
ss s

h
1 + sH ^R�1
ss s

i�1
sH ^R�1
ss

= Ht +

1

1 + sH ^R�1
ss s

(x�Hts) s
H ^R�1
ss (2.38)

= Ht + ~� (x� ^x) sH ^R�1
ss (2.39)

whereex=x� ^x=x�Hts is the current estimation-error vector. In the above
derivation we sometimes omitted the time-sample index forst, xt, ^Rxst�1 , and

^Rsst�1 . We further used the fact thatsH ^R�1
ss s is a scalar.

2.4.2 RLS1-Wx

In case we want to updateWt+1 instead ofHt+1, we can invert both sides of
(2.31) and useWt+1 ,H

�1
t+1

Wt+1 = ^Rsst
^R�1
xst

. (2.40)

However, just as in (2.31), we again need a matrix inversion for every update.
To avoid this, we start by inverting both sides of (2.39)

Wt+1 =
h
W�1
t + ~�

�
x�W�1
t s

�
sH ^R�1
ss

i�1

. (2.41)
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Applying the matrix-inversion lemma withA0 =W�1
t ,B0 = ~�

�
x�W�1
t s

�

,

C0 = 1, andD0 = sH ^R�1
ss gives

Wt+1 =Wt � ~�Wt
�
x�W�1
t s

�

�
h

1 + ~�sH ^R�1
ss Wt

�
x�W�1
t s

�i�1
sH ^R�1
ss Wt

=Wt + ~� (s� u)
h

1� ~�sH ^R�1
ss (s� u)

i�1
sH ^R�1
ss Wt

=Wt + � (s� u) sH ^R�1
ss Wt (2.42)

with

� =

~�

1� ~�sH ^R�1
ss (s� u) =

1

1 + sH ^R�1
ss u

(2.43)

where~� is defined in (2.36). In the above derivation we usedu=Wtx. Note
thates , s� u is also an estimation error, however, in general not the same as

ex.

2.4.3 RLS1-Hx with exponential forgetting

To track time-varying systems, the cost function defined in (2.32) is extended
by an exponential weighting of the past measurements

~JMSE-x =

tX
�=0

�t�� kx� �Ht s�k22 . (2.44)

This causes exponential forgetting in the recursive estimates of the correlation
matrices

^Rxst = �^Rxst�1 + (1� �)xts
H
t (2.45)

^Rsst = �^Rsst�1 + (1� �)sts
H
t (2.46)

where� denotes a forgetting factor with1 > � > 0. Doing similar calculations
as in Section 2.4.1 yields the same update equation forHt+1 but with a different
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step size~�

~�t =

1� �

�+ (1� �) sHt ^R
�1
sst�1st

(2.47)

Ht+1 = Ht + ~�t (xt � ^xt) s
H
t

^R�1
sst�1

(2.48)

^R�1
sst
=

1
�

�
^R�1
sst�1
� ~�t ^R
�1
sst�1
sts
H
t

^R�1
sst�1

�
(2.49)

where (2.47), (2.48), and (2.49) are referred to as RLS1-Hx.

2.4.4 RLS1-Wx with exponential forgetting

Using exponential forgetting and doing similar calculations as in Section 2.4.2
yields the same update equation forWt+1 but with different step sizes� and~�

�t =

1� �

�+ (1� �) sHt ^R
�1
sst�1ut

(2.50)

Wt+1 =Wt + �t (st � ut) sHt ^R�1
sst�1
Wt (2.51)

~�t =

1� �

�+ (1� �) sHt ^R
�1
sst�1st

(2.52)

^R�1
sst
=

1
�

�
^R�1
sst�1
� ~�t ^R
�1
sst�1
sts
H
t

^R�1
sst�1

�

(2.53)

where (2.50), (2.51), (2.52), and (2.53) are referred to as RLS1-Wx.

As we will see in Chapter 6, the blind version of the RLS1-Wx will be a
key algorithm for the BSS problem.

2.5 Inverse modeling

In inverse modelingwe try to find a matrixW = ^A�1 which is close to the
inverse of the true systemA�1, see also Fig. 2.2. Closeness can again be
measured in different ways. For example it could be defined bykA�1 �WkF

or kI�GkF where

Gt =WtA (2.54)
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ut

est

nt

xtst
A Wt

Figure 2.2: Inverse modeling or inverse system identification. The error signal

es is used for the adaptation.

is the global response. However, by assumption there is no access to the true
matrixA, therefore closeness is usually defined in system identification as a
function of the prediction or estimation error

est , st � ^st = st � ut (2.55)

where

ut = ^st =Wtxt = Gtst +Wtnt (2.56)

is the estimation of the source signals.W can be either estimated by a batch al-
gorithm, or by an online learning algorithm. A batch algorithm uses at discrete
time t all the past input and output time samples for the new estimateWt+1,
whereas an online algorithm uses at timet only st, xt, and the current estimate

Wt to evaluateWt+1.

2.5.1 Wiener solutionWMMSE-s

We now wish to find the Wiener or minimum mean-squared error (MMSE)
solutionWMMSE-s which minimizes the cost function

JMSE-s, E
�kesk22
	
= tr fResesg (2.57)

where

Reses , E
�
eses

H
	
= E

n
(s� u) (s� u)H

o
(2.58)

= Rss �WRxs �RsxWH +WRxxW

H (2.59)
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is the error covariance matrix. Towards this end, we build the gradient of the
cost function with respect to the matrixW

rWJMSE-s = rW tr fResesg = �2Rsx + 2WRxx (2.60)

where we usedrW = 2 @
@W� , see [51] Eq. (B.18). By settingrWJMSE-sequal

to 0 and solving forW, we finally obtain the MMSE or Wiener solution

WMMSE-s = RsxR
�1
xx . (2.61)

Alternatively, we can also derive the Wiener solution by using the orthogo-
nality principle which says that the estimation error has to be orthogonal to the
input data

E
�
esx
H
	
= E

�
sxH

	�WE
�
xxH

	

(2.62)

= Rsx �WRxx . (2.63)

By setting (2.63) equal to0 we obtain theWiener Hopf equation(WHE)
WRxx = Rsx . (2.64)

Solving forW also givesWMMSE-s given in (2.61).

Note,HMMSE-x andWMMSE-s are both MMSE solutions, however, they are both
optimal for two different cost functions (2.4) and (2.57), respectively. Therefore

HMMSE-s , [WMMSE-s]
�1
=HMMSE-x does not hold in general. By usingRxs =

ARss , we see from (2.8) thatHMMSE-x = A. ThusHMMSE-x is a bias-free estimate
ofA. However, the same is not true forWMMSE-s as we will see in the following.
Starting with (2.61) and usingRxx = ARssA

H +Rnn andRsn = Rns = 0

we obtain

HMMSE-s , [WMMSE-s]
�1
=

�
ARssA
H +Rnn
� �
RssA
H
��1

(2.65)

=
�
ARssA
H +Rnn
�
A�HR�1
ss (2.66)

= A+RnnA
�HR�1
ss (2.67)

and for the special case whereRss = �2s I andRnn = �2n I we have

HMMSE-s = A+
�2n

�2s

A�H . (2.68)

We see thatHMMSE-s is a biased estimate ofA if sensor noise is present. Hence,

HMMSE-s = HMMSE-x is valid only in the noise-free case. As a consequence, the
choice of the cost function is critical and has an impact on the estimate.
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2.5.2 Batch learning

Since we usually do not know the true covariance matricesRsx andRxx , we
can replace them by estimates^Rsx and ^Rxx , respectively. We can then esti-
mate the Wiener solution in (2.61) by

W = ^Rsx ^R
�1
xx . (2.69)

In a batch processing, we use all available measurement data of the system to
estimate the correlation matrices

^Rsx =

1
T

TX
t=1

stx
H
t (2.70)

^Rxx =

1
T

TX
t=1

xtx
H
t . (2.71)

The number of samplesT needs to be large enough such that^Rxx has full rank
and is therefore invertible.

2.6 LMS-s

Analogously toJMSE-x in Section 2.3, we can formulate a steepest-descend
algorithm which minimizesJMSE-s as

Wt+1 =Wt � �
2
rWJMSE-s (2.72)

=Wt + � (Rsx �WtRxx)

=Wt + � (Rsx �Rux) . (2.73)

The step size� controls the stability and the rate of convergence of the algo-
rithm.

2.6.1 UpdatingW

LMS3-Ws By replacingRsx andRux with their corresponding instanta-
neous estimates,stxHt andutxHt , respectively, we obtain

Wt+1 =Wt + � (s� u)xH (2.74)
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which we refer to as LMS3-Ws. Note that Eq. (2.74) has great similarity with
the form of (2.20), the LMS1-Hx algorithm. But it is the error criterion which
makes the difference.

LMS4-Ws Alternatively, we can reformulate (2.73) as

Wt+1 =Wt + �
�
RssA
H �Rux
�

.

In the special case were the source signals are uncorrelated and of unity power,
i.e.Rss = I, and by replacingRux by its instantaneous estimateuxH , we
obtain

Wt+1 =Wt + �
�
AH � uxH� . (2.75)

This update form is not practicable as it requires knowledge ofA, the unknown
system which we actually wish to identify. However, we know that near conver-
genceW�1

t is a fair approximation ofA and we therefore can modify (2.75)
as

Wt+1 =Wt + �
�
W�H
t � uxH� (2.76)

which we refer to as LMS4-Ws. The behavior of this algorithm might be diffi-
cult to predict, especially far away from convergence. Nevertheless, as we will
see in Chapter 6, this algorithm has great similarity to its blind counterpart,
namely the infomax algorithm proposed by Bell and Sejnowski [7]. Further-
more, the update (2.76) can be used for second-order blind decorrelation of
instantaneous signal mixtures [31]. In the noiseless case,Wt!1 = QA�1,
whereQ is a unitary matrix.

2.6.2 UpdatingW�1

SinceH ,W�1, we can also transform an update equation for inverse mod-
eling into an update algorithm for system identification.

LMS3a-Hs First we start with (2.74) and invert both sides

Ht+1 = [Wt+1]
�1
=

�
Wt + � (s� u)xH��1 (2.77)

= Ht � �Ht (s� u)
�
1 + �xHHt (s� u)

��1
xHHt

= Ht + � (x� ^x)
�
1� �xH (x� ^x)

��1
xHHt . (2.78)
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Here we used the matrix-inversion lemma withA0 = Wt, B0 = � (s� u),

C0 = 1, andD0 = xH . We refer to (2.78) as LMS3a-Hs.

LMS3b-Hs We can start again with (2.77) but use the matrix-inversion lemma
with A0 =Wt,B0 = � (s� u)xH ,C0 = I, andD0 = I

Ht+1 = Ht � �Ht (s� u)xH
�
I+ �Ht (s� u) xH

��1
Ht

= Ht + � (x� ^x)xH
�
I� � (x� ^x)xH

��1
Ht . (2.79)

We refer to (2.79) as LMS3b-Hs.

LMS4b-Hs Starting with (2.75) we can apply the matrix-inversion lemma

A0 =Wt,B0 = �
�
AH � uxH�,C0 = I, andD0 = I.

Ht+1 = [Wt+1]
�1
=

�
Wt + �

�
AH � uxH���1 (2.80)

= Ht � �Ht
�
AH � uxH� �I+ �Ht

�
AH � uxH���1Ht

= Ht + �
�
xxH �HtA
H
� �
I� �

�
xxH �HtA
H
���1
Ht

= Ht + �
�
xxH �R^xx

� �
I� �

�
xxH �R^xx

���1
Ht

= Ht + � (x� ^x)xH
�
I� � (x� ^x)xH

��1
Ht (2.81)

which is the same as LMS3b-Hs defined in (2.79). In this derivation we made
the assumption thatRss = I, so thatHtA = HtRssA = R^xx. Furthermore,
we replacedR^xx by its instantaneous estimate^xxH . With these assumptions,
LMS4b-Hs is mathemathically not exactly the same as LMS4-Ws anymore.

LMS4a-Hs We now start with (2.81) and apply the matrix-inversion lemma
to the matrix inverse

�
I� � (x� ^x)xH

��1

withA0 = I,B0 = �� �x� xH�,

C0 = 1, andD0 = xH . After some calculations we obtain

Ht+1 = Ht +

�

1� �xH (x� ^x)
(x� ^x)xHHt (2.82)

which is the same as LMS3a-Hs defined in (2.78).
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2.7 RLS-s

An alternative to the batch algorithm (2.69), where the correlation matricesRsx

andRxx are estimated in (2.70) and (2.71) with the help of all available mea-
surement data, respectively, is to estimate the correlation matrices recursively

^Rsxt =
^Rsxt�1 + stx
H
t (2.83)

^Rxxt =
^Rxxt�1 + xtx
H
t . (2.84)

We then obtain an online learning algorithm

Wt+1 = ^Rsxt
^R�1
xxt

(2.85)

which we will refer to as RLS2-s, as it is actually a recursive least squares
(RLS) algorithm which minimizes the cost function

~JMSE-s =

tX
�=0

ks� �Wt x�k22 (2.86)

at discrete timet.

2.7.1 RLS2-Ws

In (2.85) we have again a matrix inversion which has to be carried out at every
time samplet. However, just as for the RLS1-Hx, by using the matrix-inversion
lemma we can circumvent the cumbersome matrix inversion. To this end, we
recursively update^R�1

xxt

instead of^Rxxt . By inverting both sides of (2.84) and

using the matrix-inversion lemma withA0 = ^Rxxt�1 , B0 = xt, C0 = 1, and

D0 = xHt we obtain

^R�1
xxt
=

h
^Rxxt�1 + xtx
H
t

i�1

(2.87)

= ^R�1
xx � ^R�1
xxx

h
1 + xH ^R�1
xxx

i�1
xH ^R�1
xx (2.88)

= ^R�1
xx � ~�^R�1
xxxx

H ^R�1
xx (2.89)

~� =

1

1 + xH ^R�1
xxx

(2.90)
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where~� can be seen as a step size of the update. Next we use (2.88) to modify
(2.85) and find an efficient update forWt+1

Wt+1 = ^Rsxt
^R�1
xxt

(2.91)

=
�
^Rsxt�1 + stx
H
t

�
^R�1
xxt

=
�
^Rsx + sxH

��
^R�1
xx � ^R�1
xxx

h
1 + xH ^R�1
xxx

i�1
xH ^R�1
xx

�

=Wt �Wtx
h

1 + xH ^R�1
xxx

i�1
xH ^R�1
xx + sxH ^R�1
xx

� sxH ^R�1
xxx

h
1 + xH ^R�1
xxx

i�1
xH ^R�1
xx

=Wt �Wtx
h

1 + xH ^R�1
xxx

i�1
xH ^R�1
xx

+ s
h

1 + xH ^R�1
xxx

i h
1 + xH ^R�1
xxx

i�1
xH ^R�1
xx

� sxH ^R�1
xxx

h
1 + xH ^R�1
xxx

i�1
xH ^R�1
xx

=Wt +

1

1 + xH ^R�1
xxx

(s�Wtx)x
H ^R�1
xx (2.92)

=Wt + ~� (s� u)xH ^R�1
xx (2.93)

wherees=s�u=s�Wtx is the current estimation-error vector. In the above
derivation we sometimes omitted the time-sample index forst, xt, ut, ^Rsxt�1 ,

and^Rxxt�1 . We further used the fact thatxH ^R�1
xxx is a scalar.

2.7.2 RLS2-Hs

In case we want to updateHt+1 instead ofWt+1, we can invert both sides of
(2.85) and useHt+1 ,W

�1
t+1

Ht+1 = ^Rxxt
^R�1
sxt

. (2.94)

However, just as in (2.85), we again need a matrix inversion for every update.
To avoid this, we start by inverting both sides of (2.93)

Ht+1 =
h
H�1
t + ~� (s� u)xH ^R�1
xx

i�1
. (2.95)
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Applying the matrix-inversion lemma withA0 = H�1
t ,B0 = ~� (s� u),C0 =

1, andD0 = xH ^R�1
xx gives

Ht+1 = Ht � ~�Ht (s� u)
h

1 + ~�xH ^R�1
xxHt (s� u)

i�1
xH ^R�1
xxHt

= Ht + ~� (x� ^x)
h

1� ~�xH ^R�1
xx (x� ^x)

i�1
xH ^R�1
xxHt

= Ht + � (x� ^x)xH ^R�1
xxHt (2.96)

with

� =

~�

1� ~�xH ^R�1
xx (x� ^x)

=

1

1 + xH ^R�1
xx ^x

(2.97)

where~� is defined in (2.90). In the above derivation we used^x=Hts. Note
thatex , x� ^x is also an estimation error, however, in general not the same as

es.

2.7.3 RLS2-Ws with exponential forgetting

To track time-varying systems, the cost function defined in (2.86) is extended
by an exponential weighting of the past measurements

~JMSE-s =

tX
�=0

�t�� ks� �Wt x�k22 . (2.98)

This causes exponential forgetting in the recursive estimates of the correlation
matrices

^Rsxt = �^Rsxt�1 + (1� �)stx
H
t (2.99)

^Rxxt = �^Rxxt�1 + (1� �)xtx
H
t (2.100)

where� denotes a forgetting factor with1 > � > 0. Doing similar calcula-
tions as in Section 2.7.1 yields the same update equation forWt+1 but with a
different step size~�

~�t =

1� �

�+ (1� �)xHt ^R
�1
xxt�1xt

(2.101)

Wt+1 =Wt + ~�t (st � ut)xHt ^R�1
xxt�1

(2.102)

^R�1
xxt
=

1
�

�
^R�1
xxt�1
� ~�t ^R
�1
xxt�1
xtx
H
t

^R�1
xxt�1

�

(2.103)

where (2.101), (2.102), and (2.103) are referred to as RLS2-Ws.
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2.7.4 RLS2-Hs with exponential forgetting

Using exponential forgetting and doing similar calculations as in Section 2.7.2
yields the same update equation forHt+1 but with different step sizes� and~�

�t =

1� �

�+ (1� �)xHt ^R
�1
xxt�1^xt

(2.104)

Ht+1 = Ht + �t (xt � ^xt)x
H
t

^R�1
xxt�1
Ht (2.105)

~�t =

1� �

�+ (1� �)xHt ^R
�1
xxt�1xt

(2.106)

^R�1
xxt
=

1
�

�
^R�1
xxt�1
� ~�t ^R
�1
xxt�1
xtx
H
t

^R�1
xxt�1

�

(2.107)

where (2.104), (2.105), (2.106), and (2.107) are referred to as RLS2-Hs.

2.8 MMSE—minimum mean-squared error

cost function H= ^A W= ^A�1

JMSE-x HMMSE-x = RxsR
�1
ss �! WMMSE-x ,HMMSE-x�1

JMSE-s HMMSE-s ,WMMSE-s�1  � WMMSE-s = RsxR
�1
xx

Table 2.1: Relationship of Wiener solutions.

We now wish to evaluate the performancesJMSE-x andJMSE-s as defined
in (2.4) and (2.57), respectively, which we achieve with the Wiener solutions

HMMSE-x andWMMSE-s. To this end, we insertHMMSE-x, WMMSE-x, WMMSE-s, and

HMMSE-s (see Table 2.1) intoRexex defined in (2.6) andReses defined in (2.59).
Since the mixing system is time invariant, we haveRsx = RssA

H , Rxs =

ARss , andRxx = ARssA
H + Rnn. Furthermore we useRss = �2s I and

Rnn=�2nI for the evaluation ofJMSE-x andJMSE-s.

By doing so, we obtain after longer calculations (with the help of the matrix-
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inversion lemma)

Rexex (H

MMSE-x) = Rnn (2.108)

JMSE-x (H

MMSE-x) = M�2n (2.109)

Reses (W

MMSE-x) = A�1RnnA
�H (2.110)

JMSE-s(W

MMSE-x) = �2nkA�1k2F (2.111)

Rexex (H

MMSE-s) = Rnn
�
I+

�
ARssA
H
��1
Rnn

�
(2.112)

JMSE-x (H

MMSE-s) = �2n

�
M +

�2n

�2s
kA�1k2F

�
(2.113)

Reses (W

MMSE-s) =
�
R�1
ss +AHR�1
nnA

��1

(2.114)

JMSE-s(W

MMSE-s) = �2n tr
 �

AHA+
�2n

�2s

I
��1!

. (2.115)

Note, the values in (2.109) and (2.115) also represent the lowest achievable
values forJMSE-x andJMSE-s, respectively, namely theminimum mean-squared
error. The special case whereA is unitary results in

JMSE-x (H

MMSE-x) = M�2n (2.116)

JMSE-s(W

MMSE-x) = M�2n (2.117)

JMSE-x (H

MMSE-s) = M�2n

�
1 +

�2n

�2s

�

(2.118)

JMSE-s(W

MMSE-s) = M�2n

�
1 +

�2n

�2s

��1

. (2.119)

2.9 Block-wise update

Instead of updatingH orW at every time sample, we could do so after every
block ofL samples. The update equations are thereby modified such thatin-
ner and outer products are replaced by their average over a whole block ofL

samples. For illustration we give two examples: LMS1-Hx in (2.20) becomes

Ht+L = Ht + �
1

L
L�1X

l=0
(xt+l � ^xt+l) s
H
t+l (2.120)
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and LMS1a-Wx defined in (2.24) becomes

Wt+L =Wt +

�

L� �
L�1P

l=0
sHt+l (st+l � ut+l)

L�1X
l=0

(st+l � ut+l) sHt+lWt .

(2.121)

The block-wise update equations of the other LMS-type algorithms are derived
similarly. Note, usually a block-wise update is performed in a different way,
namely

Wt+L =Wt +
�

L
L�1X

l=0
�Wt+l . (2.122)

2.10 Simulation results

2.10.1 Performance of LMS algorithms

First we want to examine the performance of the LMS-type algorithms. We use
the mixing model with additive noise as defined in (2.1). The sensor noise is
mutually independent,Rnn = �2nI, and�n = 0:01 (�40 dB). TheM �M

dimensional mixing matrixA has real-valued entries withM=10. The source
signals are white Gaussian noise sequences, mutually independent, and of unity
power,Rss = I.

We analyze the behavior with two different mixing matricesA, one is uni-
tary and one is ill-conditioned. By definition the unitary mixing matrix has

� (A) , kAk2 � kA�1k2 = �1=�M = 1, whereas the ill-conditionedA has
logarithmically distributed singular values and condition number� (A) = 10.
The largest singular value for both mixing matrices iskAk2 , �1 = 1. Ini-
tially we setH0 = W0 = I. All plots are averages over 30 independent runs.
The simulation setup is illustrated in Fig. 2.3.

Sample-wise updateL = 1

In the first simulation we analyze the convergence rate of the LMS algorithms
based on a sample-wise update (L = 1) of H andW. The learning curves are
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n

es

x u

ex

x̂

s
W

H

A

Figure 2.3: System identification and inverse modeling (inverse-system iden-
tification). Either of the error signals,ex or es, can be used for the
adaptation. However, the performance behavior can strongly de-
pend on the choice of the error criterion. During the adaptation we
have constrainedW =H�1, and vice versa.

averages over 30 runs and shown in Fig. 2.4 and Fig. 2.5. The corresponding
step sizes� are listed in Table 2.2. We have the following remarks:

� ForL=1 we can subdivide the algorithms into three classes, where the
algorithms within one class are algebraically equivalent

(a) LMS1-Hx, LMS1a-Wx, and LMS1b-Wx,

(b) LMS2-Hx, LMS2a-Wx, and LMS2b-Wx,

(c) LMS3a-Hs, LMS3b-Hs, LMS3-Ws, LMS4a-Hs, and LMS4b-Hs.

Thus, only one learning curve is shown for each class.

� For the unitary mixing matrix the algorithms from class (a) and (c) are
dual in the sense that the behavior ofJMSE-x andJMSE-s for class (a) is
similar to the behavior ofJMSE-s andJMSE-x for class (c), respectively.

� For the algorithms of class (b) there are two learning curves depicted,
which stem from using different step sizes�. This is to demonstrate that
the algorithm is stable, but has a very high steady-state error level.
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Plot Algorithm �(A) = 1 �(A) = 10 Comments

� �

Fig. 2.4 Fig. 2.5
(a) LMS1-Hx 0.08 0.08
(b) LMS2-Hx 0.08 / 0.01 0.08 / 0.01 very high misadjustment
(c) LMS3a-Hs 0.08 0.2

LMS4a-Hs
(c) LMS3b-Hs 0.08 0.2 fast ifA is unitary

LMS4b-Hs

Fig. 2.4 Fig. 2.5
(a) LMS1a-Wx 0.08 0.08
(a) LMS1b-Wx 0.08 0.08
(b) LMS2a-Wx 0.08 / 0.01 0.08 / 0.01 very high misadjustment
(b) LMS2b-Wx 0.08 / 0.01 0.08 / 0.01 very high misadjustment
(c) LMS3-Ws 0.08 0.2

LMS4-Ws - - no convergence, unstable

Table 2.2: Step sizes� for the simulations of Fig. 2.4 and Fig. 2.5 with block lengthL = 1. The
step sizes are chosen such as to achieve the fastest initial convergence rate without
becoming unstable. The condition numbers of the unknown mixing matrices are

� (A) = 1 and� (A) = 10. The update equations of the algorithms are given in
Table E.3 and E.7 in Appendix E.

� The convergence rate of the algorithms in class (a) are robust against the
eigenvalue spread ofA andRxx . It rather depends on the eigenvalue
spread ofRss , which is equal to unity in this case.

� LMS4-Ws does not converge forW0 = I to A�1. Even usingW0 =

A�1 caused the algorithm to drift away from this point, although slowly.
However,WtA was adapted to a time-varying unitary matrixQt.

� The final steady-state error level of1M JMSE-x is equal to the sensor noise
level (�40 dB), irrespectively of� (A). This is not true for 1M JMSE-s.
There the steady-state error level depends strongly on� (A), as for a
large� (A) the sensor noise appears strongly amplified at the output.
See also the theoretical analysis in Section 2.8.

� The algorithms of class (a) show from the beginning a monotonic de-
cay ofJMSE-x, in contrast toJMSE-s, which has an initial peak. For the
algorithms of class (c) it is just the other way round.
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Plot Algorithm �(A) = 1 �(A) = 10 Comments

� �

Fig. 2.6 Fig. 2.7
(a) LMS1-Hx 1.0 0.8
(b) LMS2-Hx 0.5 0.5 very high misadjustment
(c) LMS3a-Hs 0.03 0.1

LMS4a-Hs
(d) LMS3b-Hs 0.8 1.2 fast ifA is unitary

LMS4b-Hs

Fig. 2.8 Fig. 2.9
(a) LMS1a-Wx 0.03 0.03
(b) LMS1b-Wx 1.0 1.0
(c) LMS2a-Wx 0.03 0.03 very high misadjustment
(d) LMS2b-Wx 0.3 0.3 very high misadjustment
(e) LMS3-Ws 0.9 0.9

LMS4-Ws - - no convergence, unstable

Table 2.3: Step sizes� for the simulations of Fig. 2.6, Fig. 2.7, Fig. 2.8, and Fig. 2.9 with
block lengthL = 30. The step sizes are chosen such as to achieve the fastest
initial convergence rate without becoming unstable. The condition numbers of the
unknown mixing matrices are� (A) = 1 and� (A) = 10. The update equations
of the algorithms are given in Table E.3 and E.7 in Appendix E.

� The step-size normalization in LMS1a-Wx, LMS3a-Hs, and LMS4a-Hs
has a stabilizing effect on the adaptation, if� is chosen such that the
algorithm has a fast initial convergence rate. However, for small step
sizes� the step-size normalization can also be neglected. We then derive

Wt+1 =Wt + � (s� u) sHWt (2.123)

which we refer to as LMS1c-Wx and

Ht+1 =Ht + � (x� ^x)xHHt (2.124)

which we refer to as LMS3c-Hs and LMS4c-Hs.
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Figure 2.4: Unitary mixing matrix , � (A)=1, L=1.
Performance1M JMSE-x (left column) and 1

M JMSE-s (right column)
of the following algorithms:
(a) LMS1-Hx, LMS1a-Wx, LMS1b-Wx,
(b) LMS2-Hx, LMS2a-Wx, LMS2b-Wx,
(c) LMS3a-Hs, LMS3b-Hs, LMS3-Ws, LMS4a-Hs, LMS4b-Hs.
The update is done sample by sample. The curves are averages
over 30 runs. The step sizes� are given in Table 2.2.

Block-wise updateL = 30

In the second simulation we compare the convergence rate of the LMS algo-
rithms based on a block-wise update with block lengthL= 30. The learning
curves are averages over 30 runs and shown in Figs. 2.6–2.9. The correspond-
ing step sizes� are listed in Table 2.3 We make the following observations:

� The three classes obtained withL=1 do no longer hold for a block-wise
update ofH andW with L > 1.

� The algorithms which are derived from minimizingJMSE-x are robust
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Figure 2.5: Ill-conditioned mixing matrix , � (A)=10,L=1.
Performance1M JMSE-x (left column) and 1

M JMSE-s (right column)
of the following algorithms:
(a) LMS1-Hx, LMS1a-Wx, LMS1b-Wx,
(b) LMS2-Hx, LMS2a-Wx, LMS2b-Wx,
(c) LMS3a-Hs, LMS3b-Hs, LMS3-Ws, LMS4a-Hs, LMS4b-Hs.
The update is done sample by sample. The curves are averages
over 30 runs. The step sizes� are given in Table 2.2.

against the eigenvalue spread ofA andRxx . Their convergence depends
on � (Rss), which is equal to one in this case. This observation is not
true for the algorithms which aim at minimizingJMSE-s.

� The final value forJMSE-s is higher for the ill-conditioned case. See also
the theoretical analysis in Section 2.8.

� ForL=1, the two algorithms LMS1a-Wx and LMS1b-Wx which both
are algebraically equivalent to LMS1-Hx, show quite a different con-
vergence behavior forL = 30. The same is true for LMS2a-Wx and
LMS2b-Wx, LMS3a-Hs and LMS3b-Hs, and LMS4a-Hs and LMS4b-
Hs, respectively.
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� LMS4-Ws does not converge. This is not very surprising, as the same
phenomenon was also seen forL=1.
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Figure 2.6: Unitary mixing matrix , � (A)=1, L=30.
Performance1M JMSE-x (left column) and 1

M JMSE-s (right column)
of the following algorithms:
(a) LMS1-Hx,
(b) LMS2-Hx,
(c) LMS3a-Hs, LMS4a-Hs,
(d) LMS3b-Hs, LMS4b-Hs.
The update is done block wise. The curves are averages over 30
runs. The step sizes� are given in Table 2.3.
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Figure 2.7: Ill-conditioned mixing matrix , � (A)=10,L=30.
Performance1M JMSE-x (left column) and 1

M JMSE-s (right column)
of the following algorithms:
(a) LMS1-Hx,
(b) LMS2-Hx,
(c) LMS3a-Hs, LMS4a-Hs,
(d) LMS3b-Hs, LMS4b-Hs.
The update is done block wise. The curves are averages over 30
runs. The step sizes� are given in Table 2.3.
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Figure 2.8: Unitary mixing matrix , � (A)=1, L=30.
Performance1M JMSE-x (left column) and 1

M JMSE-s (right column)
of the following algorithms:
(a) LMS1a-Wx,
(b) LMS1b-Wx,
(c) LMS2a-Wx,
(d) LMS2b-Wx,
(e) LMS3-Ws.
The update is done block wise. The curves are averages over 30
runs. The step sizes� are given in Table 2.3.
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Figure 2.9: Ill-conditioned mixing matrix , � (A)=10,L=30.
Performance1M JMSE-x (left column) and 1

M JMSE-s (right column)
of the following algorithms:
(a) LMS1a-Wx,
(b) LMS1b-Wx,
(c) LMS2a-Wx,
(d) LMS2b-Wx,
(e) LMS3-Ws.
The update is done block wise. The curves are averages over 30
runs. The step sizes� are given in Table 2.3.
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2.10.2 Performance of RLS algorithms

Now we want to investigate the performance of the RLS-type algorithms. We
use again the mixing model with additive noise as defined in (2.1). The sensor
noise is mutually independent,Rnn = �2nI, and�n = 0:01 (�40 dB). The

M �M dimensional mixing matrixA has real-valued entries withM = 10.
The source signals are white Gaussian noise sequences, mutually independent,
and with unity power,Rss = I.

We use three different mixing matrices with� (A) = 1; 10; 100, respec-
tively, logarithmically distributed singular values, where applicable, and�1 ,

kAk2=1. The forgetting factor is�=0:97, the block sizeL = 1. The initial
conditions for the adaptation areH0 =W0 = I, and^Rss0 = ^Rxx0 = 0:001�I.
The learning curves are averages over 30 runs and shown in Fig. 2.10 and
Fig. 2.11. We make the following observations:

� RLS1-Hx and RLS1-Wx have the same performance, as they are alge-
braically equal. The same is true for RLS2-Hs and RLS2-Ws. Differ-
ences in the convergence behavior are due to numerical inaccuracies, es-
pecially for the case of large eigenvalue spread of the mixing matrix.

� The lower bound forJMSE-s, given in (2.115), is for this simulation setup

�40 dB,�26:08 dB, and�10:2 dB for � (A) =1,10, and 100, respec-
tively. As seen from the performance curves, these values are almost
achieved by RLS1-x and RLS2-s. Note that regardless of the algorithm,

JMSE-s cannot become arbitrary close to the sensor noise level for a non-
unitary mixing system.

� Additional simulations have shown that reducing the sensor noise from

�40 dB to �60 dB causes a further decrease of the finalJMSE-x and

JMSE-s by approximately another 20 dB. This coincides with the theoret-
ical analysis from Section 2.8 for a small�n.

2.11 Summary

In this chapter we have developed several LMS- and RLS-type algorithms for
system identification and inverse modeling of an instantaneous mixing system.
We thereby have used two different error criteria,JMSE-x, which measures the
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output estimation or output prediction errorx� ^x of the unknown system, and

JMSE-s, which actually measures the input estimation errors�^s of the unknown
system. Independent from the cost function, we can either updateH orW ,

H�1, see Table 2.4. Thereby the matrix-inversion lemma has been shown to
be a very powerful tool to transform an algorithm for system identification into
a corresponding algorithm for inverse modeling. The relationship between the
derived algorithms is shown Table E.1 in Appendix E. The derived update
equations are summarized in Table E.3 and E.7.

From the simulation results we have also seen which algorithms are robust
against an eigenvalue spread of the unknown mixing matrixA. In Chapter 5
we extend these algorithms to make them applicable for general multichannel
system identification and inverse modeling, where the elements of the mixing
matrix are filter polynomials. Furthermore, in Chapter 6 we will transform
thesenon-blindalgorithms intoblind algorithms by exchanging the non-blind
error criteria with a blind error criteria. Since we know the performance ranking
of the non-blind algorithms, we expect that their blind counterparts will exhibit
a similar performance ranking within the group of blind algorithms.

cost function H = ^A W = ^A�1

JMSE-x Ht �! Wt = H�1
t

JMSE-s Ht =W�1
t  � Wt

Table 2.4: Transforming an update equation for system identification into one for inverse mod-
eling by using the matrix-inversion lemma, and vice versa.
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Figure 2.10: RLS1-x
Performance1M JMSE-x (left column) and 1

M JMSE-s (right column)
of the algorithms RLS1-Hx and RLS1-Wx with forgetting factor

� = 0:97. The mixing matrixA has logarithmically distributed
singular values and condition number:
(a)� (A) = 1,
(b)� (A) = 10,
(c) � (A) = 100.
The curves are averages over 30 runs.
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Figure 2.11: RLS2-s
Performance1M JMSE-x (left column) and 1

M JMSE-s (right column)
of the algorithms RLS2-Hs and RLS2-Ws with forgetting factor

� = 0:97. The mixing matrixA has logarithmically distributed
singular values and condition number:
(a)� (A) = 1,
(b)� (A) = 10,
(c) � (A) = 100.
The curves are averages over 30 runs.



Chapter 3

Circulant matrices

In this chapter we describe the mathematical tools required to extend the adap-
tive algorithms for the instantaneous mixing case to also work for the convolu-
tive mixing case.

From a Linear Algebra point of view we will focus on theDFT matrix,
circulant andblock-circulant matrices. Circulant matrices have very attractive
properties, e.g., the commutative law under multiplication. Besides, the DFT
matrix plays a major role in the analysis of circulant matrices.

We also define many operations which are related to signal processing and
describe fast implementations thereof, e.g., convolution, correlation, time re-
versal of a time series, deconvolution, and others. These are described first for
the single-channel case followed by a treatment of the multichannel case.

We describe these operations with polynomials, e.g. the two-sidedz-trans-
form, and also in the context of circulant matrices. In the subsequent chapters,
we will use the polynomial representation of time series and FIR filters. For
the implementation, however, it is more convenient to work with circulant or
diagonal matrices, for reasons of computational efficiency.

For a thorough analysis of circulant matrices and their properties, the reader
is referred to [25,48,49].
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54 Chapter 3. Circulant matrices

We will use the following notations:

� �A denotes a diagonal matrix,

� A denotes a block diagonal matrix,

� ~A denotes a circulant matrix,

� eA denotes a block circulant matrix,

� �a denotesdiag
�
�A
�

.

� ~a denotes the first column vector of~A.

3.1 Special matrices

3.1.1 DFT matrix

The normalizedC � C DFT or Fourier matrixF is defined as:

[FC ]mn =

1p
C

e�j
2�
C

mn (m;n = 0 : : : C � 1) (3.1)

with C being the size of the DFT or FFT.F is symmetric and unitary, and has
the following properties:

F�1 = F� = FH (3.2)

FT = F (3.3)

F4 = I (3.4)

F2 = F�2 = Jc (3.5)

where thecirculant-time-reversal matrixor circulant exchange matrixJc is de-
fined as

Jc ,
266664
1 0

... 1

...

...

0 1

377775 . (3.6)
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with J2c = I (involutary). TheFast Fourier Transform(FFT) is a fast method
to compute the matrix-vector product�x = F~x or the similarity transform�X =

F~XF�1, i.e.�x = FFT(~x).

Furthermore, we define the followingMC �MC diagonal block matrix

TM , IM 
FC =
264 FC

. . .
FC

375 (3.7)

T�1M = (IM 
FC)�1

= IM 
 F�1C (3.8)

where
 denotes the Kronecker product. Note thatT1 = FC . Properties of
Kronecker products are described in [15,46,101].

3.1.2 Exchange matrix

Theexchange matrixJ is defined as

J ,
264 1

...

1

375 (3.9)

and has the propertyJ2 = I (involutary), i.e.,J is its own inverseJ�1 = J.
The productJx = (xM ; : : : ; x1)

T changes the ordering of the elements. Ifx

contains the elements of a two-sided time-series, then

J (x�Tx ; : : : ; x0; : : : ; xTx)
T

= (xTx ; : : : ; x0; : : : ; x�Tx)
T (3.10)

performs a linear time reversal of the sequence.

Pre- and postmultiplication of a square matrixA by J flips the row and
column ordering

JAJ =
26664
aM;M � � � aM;1

...
...

a1;M � � � a1;1
37775 . (3.11)
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3.1.3 Projection matrix

A projection matrixP has the following properties:

Property 3.1.1 Projection matrices are idempotent:P2 = P.

Property 3.1.2 The eigenvalues of a projection matrix are either zero or one.
Consequently the rank of a projection matrixP is tr fPg.

We introduce the following projection matrix which we will use in the suc-
ceeding sections

~P�N1;N2 =
2664
IN2+1 0 0

0 0 0

0 0 IN1

3775
C�C

. (3.12)

A special case is whenN = N1 = N2

~P�N;N =
2664
IN+1 0 0

0 0 0

0 0 IN

3775
C�C

. (3.13)

The projection matrix~P is used mainly to force certain filter coefficients to
become zero, e.g.

~P�Nh;Nh (h0; : : : ; hNh; hNh+1; : : : ; h�Nh�1; h�Nh; : : : ; h�1)
T

= (h0; : : : ; hNh; 0; : : : ; 0; h�Nh; : : : ; h�1)
T (3.14)

~P0;Nh (h0; : : : ; hNh; hNh+1; : : : ; h�Nh�1; h�Nh; : : : ; h�1)
T

= (h0; : : : ; hNh; 0; : : : ; 0)
T . (3.15)
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3.1.4 Diagonal matrix

Given a vector�h = (h0; : : : ; hC�1)
T , the corresponding diagonal matrix�H is

defined as

�H = diag
�
�h
�
,

264 h0

. . .

hC�1
375 . (3.16)

The inverse operation

�h = diag
�
�H
�

(3.17)

is defined as extracting the diagonal of a matrix into a vector.

3.1.5 Circulant matrix

Given a vectorh = (h0; : : : ; hC�1)
T , the corresponding circulant matrix~H is

defined as

~H = C(h) ,
266666666664
h0 hC�1 : : : h2 h1

h1 h0 hC�1 h2

h2 h1 h0

. . .
...

...
. . .

. . .
. . . hC�1

hC�1 : : : h2 h1 h0

377777777775

. (3.18)

The first column of~H determined byh and the succeeding columns are cyclicly
down-shifted versions ofh. The inverse operation is defined as

h = C�1(~H) , ~He1 (3.19)

and returns the first column of the circulant matrix~H. Heree1 denotes the first
unit vector.

Circulant matrices have the following properties:

Property 3.1.3 Circulant matrices are Toeplitz.
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Property 3.1.4 If ~A is a circulant matrix, then~A�, ~AT , and ~AH are also
circulant matrices.

Property 3.1.5 If ~A and~B are circulant matrices, then~A+~B is also a circulant
matrix.

Property 3.1.6 If ~A and~B are circulant matrices, then~A~B is also a circulant
matrix.

Property 3.1.7 If ~A and ~B are circulant matrices, then~A~B = ~B~A (commu-
tative law).

Property 3.1.8 If ~A is a circulant matrix, then~A~AT = ~AT ~A = (~A~AT )T is
symmetric (and Toeplitz).

Property 3.1.9 If ~A is a circulant matrix, then~A~A� = ~A� ~A = (~A~A�)� is
real.

Property 3.1.10 If ~A is a circulant matrix, then~A~AH = ~AH ~A = (~A~AH)H

is self-adjointor Hermitian: re(~A~AH) is symmetric andim(~A~AH) is skew
symmetric.

Property 3.1.11 J~AJ = ~AT .

Property 3.1.12 J~A~ATJ = ~AT ~A = ~A~AT .

Property 3.1.13 If ~A is a circulant matrix, then the similarity transform

~A = F�1 �AF (3.20)

is just theeigenvalue decompositionof ~A. �A is a diagonal matrix which con-
tains theeigenvaluesof ~A, and the columns/rows ofF contain the correspond-
ing eigenvectors. As a consequence, the similarity transform

F~AF�1 = �A (3.21)

diagonalizesanycirculant matrix~A. This is probably the most important prop-
erty of circulant matrices, and many of the other properties can easily be proven
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by using (3.20) or (3.21). Some other useful relations are

F~AF�1 = �A (3.22)

F~AHF�1 = �A� (3.23)

F~ATF�1 = F2 �AF�2 = Jc�AJc (3.24)

F~A�F�1 = F2 �A�F�2 = Jc�A
�Jc . (3.25)

Property 3.1.14 The eigenvalues of a circulant matrix~A = C(a) are the DFT
coefficients ofa, i.e.,�a = diag

�
�A
�
= Fa.

Property 3.1.15 The inverse of a circulant matrix of full rank is also a circulant
matrix. From (3.20) we immediately obtain~A�1 = F�1 �A�1F.

Property 3.1.16 The pseudoinverse of a circulant matrix is also a circulant
matrix, ~A# = F�1 �A#F.

For a thorough analysis of the properties and the corresponding proofs see [25].

3.1.6 Circulant permutation matrix

A special class of circulant matrices are circulant permutation matrices which
are defined asC(ei)C�C for 1� i�C, andei is theith unity vector, e.g.C(e1)=

I. We define the followingC � C matrix~JC as

~JC�C , C(eC) =
266664
0 1

. . .
. . .
. . . 1

1 0
377775 . (3.26)
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Besides the properties of circulant and permutation matrices, matrix~J has the
following properties:

~JC = ~J�C = I (3.27)

~Jk = ~J<k>C (3.28)

~J�1 = ~JT (3.29)

~J�k = ~JC�k (3.30)

~J�k = J~JkJ (3.31)

~J = JJc = JF2 . (3.32)

Pre-multiplication of a vector with~J shifts the vector elements in a cyclic man-
ner. Leth = (h0; : : : ; hC�1)

T . Then we have

~Jh = (h1; : : : ; hC�1; h0)
T (3.33)

~Jk h = (hk; : : : ; hC�1; h0; : : : ; hk�1)
T

(0 � k � C � 1) (3.34)

~Jk h = (h<k>C

; : : : ; hC�1; h0; : : : ; h<k�1>C

)
T . (3.35)

With the help of~J, we can easily rearrange a block-partitioned matrix as
shown in the following example. We may write aC � C matrix as

~Jm
"
Am�n B

C D

#
~J�n =

"
D C

B Am�n

#C�C

. (3.36)

There are also some properties related to circulant matrices. Pre- and post-
multiplication of a circulant matrix with~J also shifts the matrix elements in a
cyclic manner. Let~H = C(h). Then we have

~Jk ~H = ~H~Jk = C(~Jk h) (3.37)

~Jm ~H~Jn = ~Jm+n ~H = ~H~Jm+n = C(~Jm+n h) (3.38)

~Jm ~H~J�n = ~Jm�n ~H = ~H~Jm�n = C(~Jm�n h) . (3.39)

The usefulness of~J lies mainly in the rearrangement of the vector or matrix
elements of operations with circulant matrices, as seen in the following: Let

~U , C(u), ~W , C(w), ~X , C(x), ~U0 , C(u0), ~W0 , C(w0), and ~X0 ,

C(x0). We have the following relation

~U = ~W ~X () ~Jm ~U = ~Jm ~W~Jn ~J�n ~X () ~U0 = ~W0 ~X0 .
(3.40)
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By choosingu0=~Jm u, x0=~Jm+nw, andx0= ~J�n x, we have~U0=~Jm ~U,

~W0 = ~Jm+n ~W, and ~X0 = ~J�n ~X. Note,u andu0, w andw0, andu andu0

have exactly the same elements, respectively, but with a different ordering. We
will use (3.40) later on in Section 3.2.2 when we discuss some algorithm design
issues.

3.1.7 Block diagonal matrix

An MC �NC block diagonal matrix is defined as

H =
26664
�H11 : : : �H1N

...
...

�HM1 : : : �HMN

37775 (3.41)

where each submatrix�Hmn is aC � C diagonal matrix.

For block diagonal matrices with block dimensionsC � C the following
properties hold:

Property 3.1.17 If A andB are two block diagonal matrices, thenA + B is
also a block diagonal matrix.

Property 3.1.18 If A andB are two block diagonal matrices, thenAB is also
a block diagonal matrix.

Property 3.1.19 The inverse of a block diagonal matrix of full rank is also a
block diagonal matrix.

Property 3.1.20 The pseudoinverse of a block diagonal matrix is also a block
diagonal matrix.

In contrast to diagonal matrices, the commutative law does not hold for block
diagonal matrices.
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3.1.8 Block circulant matrix

An MC �NC block circulant matrix is defined as

eH =
26664
~H11 : : : ~H1N

...
...

~HM1 : : : ~HMN

37775 (3.42)

where each submatrix~Hmn is aC � C circulant matrix.

For block circulant matrices with block dimensionsC � C the following
properties hold:

Property 3.1.21 Block circulant matrices are block Toeplitz, i.e.,~Hmn is Toeplitz.

Property 3.1.22 If eA is a block circulant matrix, theneA�, eAT , and eAH are
also block circulant matrices.

Property 3.1.23 If eA and eB are two block circulant matrices, theneA + eB is
also a block circulant matrix.

Property 3.1.24 If eA andeB are two block circulant matrices, theneAeB is also
a block circulant matrix.

Property 3.1.25 The similarity transform~Hmn = F�1 �HmnF is the eigen-
value decomposition of the circulant submatrix~Hmn.

Property 3.1.26 The transformH = TM eHT�1N transforms a block circulant
matrix eH into a block diagonal matrixH.

Property 3.1.27 The transformeH = T�1M HTN transforms a block diagonal
matrixH into a block circulant matrixeH.

Property 3.1.28 The eigenvalues of the circulant submatrix~Hmn are the DFT
coefficients of the first column of~Hmn, i.e., ~Hmn = C(hmn), �hmn = Fhmn.

Property 3.1.29 The inverse of a square block circulant matrix of full rank is
also a block circulant matrix.
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Property 3.1.30 The pseudoinverse of a block circulant matrix is also a block
circulant matrix.

In contrast to circulant matrices, the commutative law does not hold for block
circulant matrices.

3.2 Convolution

3.2.1 Linear convolution

Linear convolution of two sequences Let x andw be two sequences

x , fx�Tx ; : : : ; x0; : : : ; xTxg (3.43)
w , fw�Nw ; : : : ; w0; : : : ; wNwg . (3.44)

The linear convolution ofw andx is defined as

w � x = x � w = u , fu�Tx�Nw ; : : : ; u0; : : : ; uTx+Nwg (3.45)

where

ut = (w � x)t ,
NwX

n=�Nw

wnxt�n =

TxX
n=�Tx

wt�nxn . (3.46)

Fig. 3.1 illustrates the linear convolution of (3.46) and also reveals the bound-
ary effects, caused by the finite length of the two sequencesx andw.

Linear convolution as a product of two polynomials Alternatively, we can
describe the convolutionu = w � x by a multiplication of two polynomials

u(z) = w(z)x(z) (3.47)
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u0

w0

x0

∗
x−Tx xTx

wNww−Nw

uTx+NwuTx−Nwu−Tx+Nwu−Tx−Nw

x

w

u

Figure 3.1: Linear convolution of two sequences of finite length (u = w � x).
The boundary effects ofut, whereut is built from a sum of fewer
than2Nw + 1 terms, are shown graphically: Fading in on the left
for t < �Tx +Nw and fading out on the right fort > Tx �Nw.

wherex(z), w(z) andu(z) are double-sidedz-transforms (Laurent series) of

x, w andu, i.e.,

x(z) ,

TxX
t=�Tx

xtz
�t (3.48)

w(z) ,

NwX
n=�Nw

wnz
�n (3.49)

u(z) ,

Tx+NwX
t=�Tx�Nw

utz
�t (3.50)

By settingz = ej! we obtain the frequency response, and samplingz on the
unit circle, i.e.z = ejk

2�
C , gives the discrete Fourier domain.

Linear convolution of two vectors The convolution of two sequences can
also be described as the convolution of two vectors, i.e.,u = w � x with

x , (x�Tx ; : : : ; x0; : : : ; xTx)
T (3.51)

w , (w�Nw ; : : : ; w0; : : : ; wNw)
T (3.52)

u , (u�Tx�Nw ; : : : ; u0; : : : ; uTx+Nw)
T . (3.53)
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We define the convolution operator� as

u = w � x , T (w)x (3.54)

= x �w , T (x)w (3.55)0BBBBBBBBBBBBBBBBBBBBBBBB@
u�Tx�Nw

...

u�Tx

...

u0

...

uTx

...

uTx+Nw

1CCCCCCCCCCCCCCCCCCCCCCCCA
=

2666666666666666664
w�Nw

...
...

w0 w�Nw

...
...

...

wNw w0

. . .
...

wNw

3777777777777777775
0BBBBBBBBBB@
x�Tx

...

x0

...

xTx

1CCCCCCCCCCA

(3.56)

T (w) is a lower triangular Toeplitz matrix havingw padded with zeros in its
first column [65]. Note thatT (w) has dimension(2(Tx+Nw)+1)� (2Tx+1)

whereasT (x) is a (2(Tx + Nw) + 1) � (2Nw + 1) lower triangular Toeplitz
matrix. In fact, the dimensions of the matrixT (:) are defined by the argument
and the subsequent vector. The extension to the convolution of three sequences

u = w � a � s is straightforward and is defined as

u = w � a � s = T (w) (T (a)s) (3.57)

= T (T (w)a)s (3.58)

We say that the linear convolution of two time seriesu = w � x, the mul-
tiplication of their corresponding polynomials of the double-sidedz-transform

u(z) = w(z)x(z), and the convolution of two vectors which contain the coef-
ficients of the time seriesu = w � x areisomorphic, i.e.,

u = w � x �= u(z) = w(z)x(z) �= u = w � x (3.59)

as all representations yield the same result, i.e., the elements ofu, u(z) andu

are identical. In Section 3.2.3 we will describe an efficient method for comput-
ing the linear convolution of two time series, by exploiting a fast algorithm to
compute the circular convolution.
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3.2.2 Circular convolution

Circular convolution of two sequences Let ~x and ~w be two sequences of
finite lengthC � 2max (Tx; Nw) + 1, which are zero-centered (C odd)

~x , f0; : : : ; 0; x�Tx ; : : : ; x0; : : : ; xTx ; 0; : : : ; 0gC (3.60)

~w , f0; : : : ; 0; w�Nw ; : : : ; w0; : : : ; wNw ; 0; : : : ; 0gC . (3.61)

We define thecircular convolutionas

~u = ~w ~ ~x (3.62)

with

~ut = ( ~w ~ ~x)t ,

NwX
n=�Nw

wnx<t�n>C

t 2 f�bC=2c; � � � ; bC=2cg (3.63)

,

TxX
n=�Tx

w<t�n>C

xn t 2 f�bC=2c; � � � ; bC=2cg . (3.64)

The sequence~u also has lengthC. Thegeneralized remainder< : >C is de-
fined in Appendix D.1 and returns values fromf�bC=2c; � � � ; bC=2cg. De-
pending onC, Tx, andNw, we distinguish between three different cases, see
also Fig. 3.2:

1. C > 2 (Tx +Nw) + 1

~u = f0; : : : ; 0; u�Tx�Nw ; : : : ; u0; : : : ; uTx+Nw ; 0; : : : ; 0gC (3.65)

The non-zero elements of the circulant convolution~u = ~w ~ ~x coincide
with the elements of the linear convolutionu = w � x.

2. C = 2 (Tx +Nw) + 1

~u = fu�Tx�Nw ; : : : ; u0; : : : ; uTx+NwgC (3.66)

The linear and the circular convolution are equal, i.e.~u = ~w ~ ~x =

w � x = u.
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Figure 3.2: Circular convolution of two sequences~u = ~w ~ ~x with

C > 2 (Tx +Nw) + 1, Tu = Tx +Nw (top),

C = 2 (Tx +Nw) + 1, Tu = Tx +Nw = C (middle),

C < 2 (Tx +Nw) + 1, Tu = C � Tx �Nw � 1 (bottom).
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3. 2 (Tx +Nw) + 1 > C � 2max (Tx; Nw) + 1

~u =
�
u�bC=2c; : : : ; u�Tu; : : : ; u0; : : : ; uTu; : : : ; ubC=2c

	
C

(3.67)

where the subsequenceP�Tu;Tu (~u) , fu�Tu; : : : ; u0; : : : ; uTug coin-
cides with the2Tu+1 center elements of the linear convolutionu = w�x,
i.e.,

P�Tu;Tu (~u) = P�Tu;Tu (u) , fu�Tu; : : : ; u0; : : : ; uTug (3.68)

which holds for

Tu � C � Tx �Nw � 1 . (3.69)

The upper bound in (3.69) was obtained from2Tu+1 = 2C�2 (Tx +Nw)�

1, see Fig. 3.2.

Circular convolution as a multiplication of two polynomials Alternatively,
we can describe the circular convolution~u = ~w ~ ~x for a given lengthC by a
multiplication of two polynomials followed by a circular polynomial projection

~u(z) , ~PC (u(z)) (3.70)

= ~PC (w(z)x(z)) (3.71)

where ~PC (:) is the circular polynomial projection operatordefined in Ap-
pendix D.2. Similar to (3.68) we have

P�Tu;Tu (~u(z)) = P�Tu;Tu (u(z)) ,

TuX
t=�Tu

utz
�t (3.72)

which holds for

Tu �
(
Tx +Nw for 2 (Tx +Nw) + 1 � C

C � Tx �Nw � 1 for 2 (Tx +Nw) + 1 > C � 2max (Tx; Nw) + 1 .

(3.73)

just as for~u = ~w~ ~x. This means that the center2Tu+1 elements of the linear
and circular convolution are equal.
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In the case whereC < 2Tx+1 orC < 2Nw+1, we can write with (D.111)

~u(z) = ~PC
�
~PC (w(z)) ~PC (x(z))

�

(3.74)

= ~PC ( ~w(z) ~x(z)) (3.75)

where~x(z) , ~PC (x(z)) and ~w(z) , ~PC (w(z)).

Note, that if we find a fast algorithm for the computation of a circular con-
volution, we immediately also have a fast algorithm for a linear convolution,
because due to (3.72) there are always2Tu + 1 elements of the circular convo-
lution which coincide with2Tu + 1 elements of the linear convolution. From
(3.73) we see that increasingC also increasesTu for small values ofC.

Circular convolution of two vectors We define the following vectors

~x , (x0; : : : ; xTx ; 0; : : : ; 0; x�Tx ; : : : ; x�1)
T (3.76)

~w , (w0; : : : ; wNw ; 0; : : : ; 0; w�Nw ; : : : ; w�1)
T (3.77)

~u , (u0; : : : ; uTu; 0; : : : ; 0; u�Tu; : : : ; u�1)
T . (3.78)

The vectors are zero-padded in the center such that they all have lengthC. Here
we remove the constraint thatC must be odd. Note, that the elements of the
sequencex and those of the vectorx, defined in (3.51), are arranged similarly in
ascending order. However, the elements of~x and~x are arranged in a different
manner. We use the following definition for the circular convolution of two
vectors

~u = ~x~ ~w = ~w~ ~x , C�1(C(~w) C(~x)) (3.79)

= C(~w)~x = C(~x)~w (3.80)

whereC(:) andC�1(:) are defined in (3.18) and (3.19), respectively. The def-
inition (3.79) requires a product of two matrices, whereas (3.80) uses only a
matrix-vector product. Extending both sides of (3.79) to a circulant matrix, and
using the definitions~U , C(~u), ~W , C(~w), and~X , C(~x), gives

C(~u) = C(~x~ ~w) = C(~w)C(~x) (3.81)

~U = ~W~X . (3.82)

We see that the circular convolution of two vectors is isomorphic to the product
of two circulant matrices.
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As an example, constructing the circulant matrix~W = C(~w) with ~w de-
fined in (3.77), yields

~W =
266666666666666666666666666666664
w0 w�1 � � � w�Nw 0 � � � 0 wNw � � � w1

w1 w0

. . .
. . .

...

...
. . .

. . . wNw

wNw

...
... 0

0

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0

. . .
. . . w�Nw

w�Nw

...
...

...

...
. . .

. . . w0 w�1

w�1 � � � w�Nw 0 � � � 0 wNw � � � w1 w0

377777777777777777777777777777775

(3.83)

Note, arranging the elementswn in ~w as given in (3.77), causes the center
elementw0 to lie on the diagonal of~W. This representation has the useful
property that the elements ofC�1( ~WT ) andC�1( ~W) are arranged in circular
time-reversed order,C�1( ~WT ) = Jc C�1( ~W) whereJc is defined in (3.6).
This means that transposition of the filter matrix~W or the input-signal matrix

~X causes a circular time reversal of the underlying filter or signal sequence,
respectively. This is equal to changingw(z) to w(z�1). Since~X = C(~x) is
built similarly to ~W, x0 lies on the diagonal of~X. As a consequence,~U =

~W~X will haveu0 on its main diagonal.

Circular convolution of three vectors Of course the circular convolution
operation can be extended straightforwardly to the circular convolution of three
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or more vectors

~u = ~w ~ ~a~~s = C�1(C(~w) C(~a) C(~s)) (3.84)

= C(~w) C(~a)~s (3.85)

= C(C(~w)~a)~s (3.86)

= C�1(C(C(~w)~a) C(~s)) . (3.87)

The circular convolution can be described in matrix form with the help of cir-
culant matrices as

~U = ~W~A~S . (3.88)

To summarize, we have the following isomorphism

~u = ~w ~ ~x �= ~u(z) = ~PC ( ~w(z) ~x(z))

�= ~u = ~x~ ~w �= ~U = ~W~X �= �U = �W�X . (3.89)

Rearrangement of vector elements For implementation reasons, one is some-
times interested in rearranging the vector elements for a circular convolution,
e.g.~w ~ ~x. From (3.40) withm=0 we have

~u = ~w ~ ~x = ~Jn ~w ~ ~J�n ~x = ~w0 ~ ~x0 (3.90)

which reveals that the output vector~u remains unaffected if we rotate the ele-
ments of~w anti-clockwise and rotate the elements of~x clockwise by the same
number, and vice versa. More generally, if we also want to rotate the elements
of the output vector~u, again from using (3.40) we have

~u = ~w ~ ~x () ~Jm ~u = ~Jm+n ~w~ ~J�n ~x () ~u0 = ~w0 ~ ~x0 .
(3.91)

with ~u0 = ~Jm ~u, ~w0 = ~Jm+n ~w, and~x0 = ~J�n ~x. Note that~J�n = (~Jn)T .
Eq. (3.91) is a very powerful tool for algorithm design purposes.

3.2.3 Fast computation of the convolution

Fast computation of a circular convolution We now derive an efficient
method for computing a circular convolution via the product of two circulant
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matrices. Starting with (3.82), we apply the similarity transform given in (3.21)
and obtain

F~UF�1 = F ~WF�1F~XF�1 (3.92)

�U = �W�X . (3.93)

Eq. (3.93) is a product of two diagonal matrices which requires with

�u = �w� �x (3.94)

only C multiplications, where� denotes the element-wise multiplication of
two vectors,�u , diag

�
�U
�

, �w , diag
�
�W

�

, and�x , diag
�
�X
�

. By further
exploiting the computational efficiency of the FFT and IFFT, i.e.,�x = F~x =

FFT(~x), �w = F~w = FFT(~w), and~u = F�1�u = IFFT(�u), we finally obtain

~u = ~w ~ ~x = IFFT (FFT(~w)� FFT(~x)) (3.95)

as a fast implementation of the circular convolution. The extension of (3.95) to
more than two vectors is straightforward, e.g., (3.84) is computed as

~u = IFFT (FFT(~w)� FFT(~a)� FFT(~s)) . (3.96)

Fast computation of a linear convolution From Section 3.2.2 we know that
the linear convolution of two sequences can be computed by the circular con-
volution with the appropriate lengthC, e.g.,w(z)x(z) = ~PC (w(z)x(z)) for

C � 2 (Tx +Nw) + 1. Since with (3.95) there exists a fast algorithm for the
computation of the circular convolution, we automatically also have a fast al-
gorithm for the linear convolution. IfC < 2 (Tx +Nw) + 1, from (3.69) and
(3.73) we know that there areTu = C � Tx �Nw � 1 elements of~u = ~w~ ~x

which coincide with those ofu = w � x, see also Fig. 3.2.

3.3 Complex conjugation, time reversal, and cor-
relation

With linear time we mean that�1 � tlin �1 and with circular time we mean

tcirc = < tlin >C . With linear time reversalwe understand the mappingtlin !

�tlin and withcircular time reversalthe mappingtcirc! �tcirc = < �tlin >C .
The relation between linear and circular time reversal is illustrated in Fig. 3.3.
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3.3.1 Linear time reversal

Time reversal of a sequence Let x = fx�Tx ; : : : ; xTxg be a sequence of
length2Tx+1. With �x = fxTx ; : : : ; x�Txgwe denote the time-reversed ordered
sequence. Furthermore, we definex� =

�
x��Tx

; : : : ; x�Tx

	
and consequently

�x� =
�
x�Tx

; : : : ; x��Tx

	

.

Time reversal of a polynomial Thez-transform of a sequencex can be writ-
ten as

x(z) = xT z = zTx (3.97)

x = (x�Tx ; : : : ; x0; : : : ; xTx)
T (3.98)

z =
�
zTx ; : : : ; z; 1; z�1 : : : ; z�Tx

�T

. (3.99)

Complex conjugating both sides of (3.97) yields

x�(z) , (x(z))
�
=

�
xT

��
z� = xHJ z = x�(z
�1) (3.100)

where we usedz� = Jz with J from (3.9) and
x� =

�
x��Tx

; : : : ; x�0; : : : ; x
�
Tx

�T

(3.101)
z� =

�
z�Tx ; : : : ; z�1; 1; z : : : ; zTx

�T

. (3.102)

We see that the filter coefficients are complex conjugate, and the filter is time
reversed. Furthermore, withx(z�1) = xT z� andx�(z) ,

�
xT

��
z we have

the following relations

x(z) =

N2X
n=N1

xnz
�n (3.103)

x(z�1) =

N2X
n=N1

xnz
+n =

�N1X
n=�N2

x�nz
�n (3.104)

x�(z) =

N2X
n=N1

x�nz
�n (3.105)

x�(z) =

N2X
n=N1

x�nz
+n =

�N1X
n=�N2

x��nz
�n = x�(z
�1) . (3.106)

x(z�1) corresponds to a linear time reversal ofx(z), in x�(z) the coefficients
of x(z) are complex conjugate, andx�(z) is the combination of both.
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x−Tx

xTx

00 0 0

x0
x−1 x1

x−Tx
xTx

x0

x−Tx

x−1x1
x0

x−Tx
x0xTx

xTx

Figure 3.3: Linear and circular time-reversal: (left)x(z): x and ~x, (right)

x(z�1): Jx andJc ~x.

Time reversal of vector The elements of a vectorx are time reversed by
premultiplication with the exchange matrix, i.e.Jx.

Linear correlation Complex conjugation and time reversal play an important
role for the linear convolution operation. Letx andw denote two sequences of
finite length. Sincew � x is a linear convolution, time reversing and complex
conjugation of one sequence yields a linear correlation, e.g.,�w� � x andw �

�x�. Likewise,w�(z)x(z) andw(z)x�(z) are linear correlations described by
polynomials, andJw� � x andw � Jx� are linear correlations described by
vectors.

3.3.2 Circular time reversal

Circular time reversal of a sequence Let ~x be a zero-centered sequence of
lengthC. The circular time reversal is equal to the linear time reversal.
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Circular time reversal of a polynomial Let

~x(z) , ~PC (x(z)) =

bC=2cX
n=�bC=2c

~xnz
�n (3.107)

then ~x(z�1), ~x�(z), and ~x�(z) are defined similar to (3.104), (3.105), and
(3.106), respectively. Furthermore we have

~x(z�1) = ~PC
�
x(z�1)

�
(3.108)

which means, if~x(z) is built from a polynomialx(z) =
PTx

n=�Tx

xnz
�n with

2Tx + 1 > C, then it does not matter whether we first time reversex(z) and
then apply~PC (:) or if we first apply ~PC (:) and then time reverse~x(z).

Circular time reversal of vector Let ~x be defined as in (3.76). The elements
of ~x are circular time reversed by premultiplication with the circulant exchange
matrix

Jc~x = (x0; x�1; : : : ; x�Tx ; 0; : : : ; 0; xTx ; : : : ; x1)
T . (3.109)

Circular time reversal of a circulant matrix Let ~X = C(~x). ThenC�1(~XT )

returns a vector whose elements are circular time reversed, as in (3.109).

Circular correlation Complex conjugation and time reversal also play an
important role for the circular convolution operation. Let~x and ~w denote two
zero-centered sequences of lengthC. Since~w~~x is a circular convolution, time
reversing and complex conjugation of a sequence yields a circular correlation,
e.g., �~w� ~ ~x or ~w � �~x�. Likewise ~PC (w�(z)x(z)) and ~PC (w(z)x�(z)) are
circular correlations described by polynomials,Jc ~w

� ~ ~x and ~w ~ Jc~x
� are

circular correlations described by vectors, and~WH ~X and ~W~XH are circular
correlations described by circulant matrices.Jc is defined in (3.6). Special case:

~x~ �~x� �= ~x~ Jc~x
� �= ~X~XH corresponds to a circular autocorrelation.
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Summary We have the following single-channel isomorphism

~x(z�1) �= Jc~x �= ~XT (3.110)

~x�(z) �= ~x� �= ~X� (3.111)

~x�(z) �= Jc~x
� �= ~XH . (3.112)

3.4 Deconvolution

3.4.1 Linear deconvolution

Linear deconvolution of a sequence Let a be a given sequence. We define
the deconvolution ofa such thata � a�1 = f: : : ; 0; 1; 0; : : :g = Æ(n) becomes
a zero-centered sequence. Ifa has finite length,a�1 has usually infinite length.
However, for practical applications we truncatea�1 such thatPC

�
a�1

� � a �

f: : : ; 0; 1; 0; : : :g.

Linear deconvolution of a polynomial Leta(z) be the two sidedz-transform
of the sequencea with ka(z)kF < 1. With a�1(z) we denote thestablein-
verse ofa(z) such thata(z) a�1(z) = 1 and



a�1(z)


F

< 1. We thereby
require that no roots ofa(z) lie on the unit circle,a(ej!) 6= 0 for ! 2 [��; �].
Note, stability can be exchanged with non-causality. Letw(z) = a�1(z) and

a(z) be causal. Ifa(z) is minimum phase(all roots lie inside the unit circle),
thena�1(z) =

P1
n=0 wnz

�n. If a(z) is maximum phase(all roots lie outside
the unit circle), thena�1(z) =

P�1
n=�1 wnz

�n. If a(z) is mixed phase(the
roots lie in- and outside the unit circle), thena�1(z) =

P1
n=�1 wnz

�n.

3.4.2 Circular deconvolution

Circular deconvolution of a sequence Let

~a , f0; : : : ; 0; a�Nw ; : : : ; a0; : : : ; aNa0; : : : ; 0gC (3.113)

be a zero-centered sequence of lengthC. The circular deconvolution of~a is
defined such that~a ~ ~a�1 = f: : : ; 0; 1; 0; : : :gC is also zero-centered. Note,
opposite toa�1 in the linear deconvolution,~a�1 is of finite lengthC.
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Circular deconvolution of a polynomial Let ~a(z) , ~PC (a(z)). From the
linear deconvolution we havea(z) a�1(z) = 1 by definition. Therefore, with
(D.111),

~PC
�
a(z) a�1(z)

�
= 1 (3.114)

~PC
�

~a(z) ~PC
�
a�1(z)

��
= 1 . (3.115)

We define the circular-deconvolution polynomial as~a�1(z) , ~PC
�
a�1(z)

�

.
Furthermore, from (D.115) we have

~a�1(z) = ~PC
�
a�1(z)

�
= ~PC

��
~PC (a(z))

��1�

. (3.116)

If C is chosenlarge enough, then~a(z)�1 is approximately equal to theC

center elements ofa�1(z), e.g.

a�1(z) � PC
�
a�1(z)

� � ~PC
�
a�1(z)

�
= ~a�1(z) . (3.117)

Circular deconvolution of a vector Let

~a , (a0; : : : ; aNa; 0; : : : ; 0; a�Na; : : : ; a�1)
T (3.118)

be a vector of lengthC. We define the circular deconvolution of a vector~a such
that

~a�1 ~ ~a = e1 (3.119)

wheree1 denotes the first unit vector. Extending both sides of (3.119) to a
circulant matrix similar to (3.81) we obtain

C(~a�1)C(~a) = I (3.120)

C(~a�1) = (C(~a))�1 (3.121)

and therefore

~a�1 , C�1((C(~a))�1) . (3.122)

In fact, (3.120) corresponds to~A�1 ~A = I and therefore we see that~A must
have full rank, which is true if the elements ofF~a, the eigenvalues of~A,
are non-zero. A fast implementation of (3.122), which is equal to~a�1 =

F�1 (F~a)
((�1)), is given in [69,71]

~a�1 = IFFTf(FFTf~ag)((�1))g (3.123)

where(:)((�1)) denotes the element-wise inversion of a vector.
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Summary We have the following single-channel isomorphism

~x�1(z) �= C�1(C(~x)�1) �= ~X�1 . (3.124)

3.5 Multichannel extension

We now extend the operators, described in the previous subsections for the
single-channel case, to the multichannel case. Since we have seen that many
linear-time operations can be efficiently implemented or approximated by the
corresponding circular-time operations, we will focus only on the extension of
the circular-time operations.

Roughly speaking, a polynomial is replaced by a polynomial matrix and a
circulant matrix is replaced by block-circulant matrix.

3.5.1 Multichannel convolution

This subsection is the multichannel extension of Section 3.2.

Multichannel linear convolution of two polynomial matrices Let

x(z) =

1X
t=�1

xtz
�t (3.125)

W(z) =

1X
n=�1

Wnz
�n . (3.126)

be two Laurent-series or polynomial matrices. The multichannel linear convo-
lution is defined as

u(z) =W(z)x(z) . (3.127)
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Multichannel circular convolution of two polynomial matrices Let

~x(z) =

TxX
t=�Tx

xtz
�t (3.128)

~W(z) =

NwX
n=�Nw

Wnz
�n . (3.129)

The multichannel circular convolution is defined as

~u(z) = ~PC
�
~W(z)~x(z)

�
. (3.130)

Similar to the single-channel case described in Section 3.2.2, we distinguish
between three different cases depending onC, Nw, andTx.

Multichannel circular convolution with block circulant matrices LeteXMC�C = [~Xm] = [C(~xm)] andfWMC�MC = [ ~Wmn] = [C(~wmn)] be two
block circulant matrices. We can define the multichannel circular convolution
as

eU = fW eX (3.131)

where eUMC�C = [~Um] = [C(~um)] is also a block circulant matrix. Pre-
and post-multiplying (3.131) withTM andT�11 , whereTM is defined in (3.7),
yields

TM eUT�11 = TMfWT�1M TM eXT�11 (3.132)

U =WX (3.133)

whereU = TM eUT�11 , X = TM eXT�11 , andW = TMfWT�1M are all block
diagonal matrices, see Section 3.1.7.

We now analyze the computational complexity of (3.131) and (3.133). The
direct computation of (3.131) requiresM2C3 multiplications andM2C3 �

MC2 additions. SinceeU is a block circulant matrix, it suffices to compute only
the first row ofeU, because the remainingC � 1 rows are only permutations of
the first row. Therefore, the computation reduces toM2C2 multiplications and

M2C2 �MC additions. However, the computation of (3.133), the product of
two block diagonal matrices, requires onlyM2C multiplications andM2C �
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MC additions. This is about an order of magnitude lower than with (3.131), as
we usually haveC �M . In addition, we needM FFTs for the computation of

X, M IFFTs for eU, andM2 FFTs forW, if W is not already available in the
frequency domain. Since the complexity of an FFT / IFFT is aboutC logC,
which grows lower thanC2, it is still worthwhile to take (3.133) for large values
of C.

Summary We have the following isomorphism

~u(z) = ~PC
�
~W(z)~x(z)

� �= eU = fW eX �= U =WX . (3.134)

3.5.2 Complex conjugation, time reversal, and correlation

This subsection is the multichannel extension of Section 3.3.

Polynomial matrices Let

X(z) =

N2X
n=N1

Xnz
�n (3.135)

be a polynomial matrix or a matrix polynomial. We then have the following
relations

X(z�1) =

N2X
n=N1

Xnz
+n =

�N1X
n=�N2

X�nz
�n (3.136)

X�(z) =

N2X
n=N1

X�
nz

�n (3.137)

X�(z) =

N2X
n=N1

X�
nz

+n =

�N1X
n=�N2

X�
�nz

�n = X�(z
�1) (3.138)

XT (z) =

N2X
n=N1

XT
nz

�n (3.139)

XH (z) =

N2X
n=N1

XH
n z

+n =

�N1X
n=�N2

XH
�nz

�n = XT
� (z

�1) . (3.140)
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Block circulant matrices Let eXMC�NC = [~Xmn] = [C(~xmn)] be a block
circulant matrix. We then haveeXT = [~XT

nm] = [C(Jc~xnm)], eX� = [~X�
mn] =

[C(~x�mn)], andeXH = [~XH
nm] = [C(Jc~x

�
nm)].

Circular correlation Let ~W(z) and ~X(z) be two polynomial matrices, andfW and eX be two block circulant matrices, where~W(z) �= fW and~X(z) �= eX.

Then ~PC
�
~WH(z) ~X(z)

� �= fWH eX and ~PC
�
~W(z) ~XH(z)

� �= fW eXH are

circular correlations described by polynomial matrices and block circulant ma-

trices, respectively, if the products exist. The special case~PC
�
~X(z) ~XH(z)

� �=eXeXH corresponds to a circular autocorrelation.

3.5.3 Multichannel deconvolution

This subsection is the multichannel extension of Section 3.4.

Multichannel linear deconvolution of a polynomial matrix LetA(z) be a
square polynomial matrix withkA(z)kF < 1. With A�1(z) we denote the
stableinverse ofA(z), i.e.



A�1(z)




F

< 1, such thatA(z)A�1(z) = I.
We require that no roots ofdetA(z) lie on the unit circle, i.e.,detA(ej!) 6= 0

for ! 2 [��; �]. Depending on the roots ofdetA(z), we can also distinguish
between a minimum-, maximum-, or mixed-phase system, just as for a polyno-
mial.

If A(z) is a rectangular matrix, we can define in a similar way the Moore-
Penrose pseudoinverseA#(z).

Multichannel circular deconvolution of a polynomial matrix Let ~A(z) ,

~PC (A(z)) be a square polynomial matrix. From the multichannel linear de-
convolution we haveA(z)A�1(z) = I by definition. Therefore, with (D.111),

~PC
�
A(z)A�1(z)

�
= I (3.141)

~PC
�
~A(z) ~PC
�
A�1(z)

��
= I . (3.142)
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We define~A�1(z) , ~PC
�
A�1(z)

�

to be the circular-deconvolution polyno-
mial matrix. Furthermore, from (D.115) we have

~A�1(z) = ~PC
�
A�1(z)

�
= ~PC

��
~PC (A(z))

��1�

. (3.143)

If C is chosenlarge enough, then

A�1(z) � PC
�
A�1(z)

� � ~PC
�
A�1(z)

�
= ~A�1(z) . (3.144)

Circular deconvolution of a block circulant matrix Let ~A(z) , ~PC (A(z))

be anM �M polynomial matrix andeA be anMC �MC block circulant ma-
trix, with ~Amn = [eA]mn = C(~amn), and

~amn , (amn;0; : : : ; amn;Na; 0; : : : ; 0; amn;�Na; : : : ; amn;�1)
T (3.145)

containing the coefficients of[ ~A(z)]mn. We then have the isomorphism

~A�1(z) , ~PC
�
A�1(z)

� �= eA�1 . (3.146)

Fast inversion of a block circulant matrix We can decompose the block
circulant matrixeA into

eA = T�1M ATM (3.147)

[ eA ]mn = diag
�
F�1 �amn

�

(3.148)

whereA is a block diagonal matrix andTM is defined in (3.7). From (3.147)
we then have

A = TM eAT�1M (3.149)

[A ]mn = diag (F~amn) . (3.150)

Inverting both sides of (3.147) yields

eA�1 = T�1M A
�1
TM . (3.151)

From (3.148), (3.150), and (3.151) we see, that the inversion of the block cir-
culant matrixeA can be done byM2 FFTs,M2 IFFTs, and an inversion of a
block diagonal matrixA. There exist fast algorithms to invert a block diagonal
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matrix, which require onlyC matrix inversions of anM �M matrix. This is

due to the sparseness of a block diagonal matrix and becauseA
�1

is again a
block diagonal matrix with onlyM2C non-zero elements.

If ~A(z) , ~PC (A(z)) is anM �N rectangular polynomial matrix, we can
proceed in a similar way, i.e.~PC

�
X#(z)

� �= eX#.

3.6 Summary

In the limit whereC goes towards infinity, all the operations in the circular
time domain coincide with those in the linear time domain, e.g., convolution,
deconvolution, correlation, time reversal, etc. Actually, many operations can be
implemented more efficiently in the circular time domain, for instance circular
convolution with the help of the FFT / IFFT. Other operations are inherently
less complex in their computation. For example for the circular deconvolu-
tion we have to compute only a finite number of elements, whereas the linear
deconvolution requires in general an infinite number.

For practical applications, however, it is mostly sufficient if the operations
in the linear time domain are well approximated. Therefore, if in the circular
time domainC is chosenlarge enough, the operations in the linear time domain
can be sufficiently well approximated.

Circulant and block circulant matrices have shown to be very useful for the
computation of many operations which appear in multichannel signal process-
ing, not only because of the isomorphic mapping between polynomial matrices
and block circulant matrices, but also because of their interesting properties re-
lated to Linear Algebra. Block circulant matrices are also very closely related to
FIR matrices, within an FIR-matrix algebra, as pointed out by Lambert [69,71].

A summary of single-channel and multichannel isomorphisms between poly-
nomial matrices and (block) circulant matrices are given in Fig. 3.1 and Fig. 3.2,
respectively.
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operation polynomials circulant
matrices

diagonal
matrices

w(z) ~W �W=F ~WF�1

time reversal w(z�1) ~WT Jc �WJc

complex conjugation w�(z) ~W� Jc �W

� Jc

w�(z) = w�(z
�1) ~WH �W�

circ. inversion ~PC
�
w�1(z)

�
~W�1 �W�1

circ. convolution ~PC ( w(z) x(z) ) ~W ~X �W �X

Table 3.1: Isomorphic mapping — single-channel case.
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polynomials block circulant
matrices

block diagonal
matrices

W(z) fW=[ ~Wmn ] W=(I
F)fW (I
 F�1)

W(z�1) [ ~WT
mn ] (I
 Jc)W (I
 Jc)

WT (z) [ ~Wnm ] W

T

W�(z) fW� (I
 Jc)W
�
(I
 Jc)

WH(z)=WT
� (z

�1) fWH=[ ~WH
nm ] W

H

WT (z�1) fWT =[ ~WT
nm ] (I
 Jc)W

T
(I
 Jc)

W�(z
�1) [ ~WH
mn ] W

�

WT
� (z) [ ~W�
nm ] (I
 Jc)W

H

(I
 Jc)

~PC
�
W�1(z)

� fW�1 W

�1

~PC
�
W#(z)

� fW# W

#

~PC (W(z) x(z) ) fW eX WX

Table 3.2: Isomorphic mapping — multichannel case.



Chapter 4

Single-channel identification
and inverse modeling

For a single-input system, system identification and inverse modeling of an
instantaneous mixing system, described in Chapter 1, degenerates to a single-
channel gain and inverse-gain estimation. We analyze this problem in more
detail, as this is also the most simple case of a single-channel system identi-
fication and also of inverse modeling of an FIR filter. We thereby investigate
three different learning concepts for the adaptation, namely online, batch (off
line), and block-wise learning. Afterwards, we extend these concepts to the
case where the unknown system consists of an FIR filter.

Usually, the assumption is made that the multichannel filtersA(z), H(z),

W(z), and also the signal vectorss(z), x(z), ^x(z), andu(z) are described by
two-sided Laurent series with infinitely many terms, e.g.

a(z) =

1X
k=�1

akz
�k . (4.1)

As an example we choose the LMS1-Hx, whose update equation for the iden-
tification of a mixing matrix is given byHt+1 = Ht + �texts

H
t . The natural

extension of the problem is to replaceA by A(z), which is referred to as a
convolutive mixingof the source signals. Intuitively, we expect the extension
of the update equation to becomeHk+1(z) =Hk(z)+�kexk(z)s

H(z), where

87
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sH(z) = s�(z
�1) andk denotes the iteration index. In other words, every ma-

trix and vector in the system model or update equation is replaced by a poly-
nomial matrix. In reality, however, we deal with filters and time series of finite
length and we do not exactly know, if this simple extension still holds, and if
not, how we have to modify the update equations.

The use of the polynomial projection operatorP (:), defined in Appendix
D.2, allows a compact description of the system and the update equations. The
equations can then be easily transformed into a matrix / vector notation (iso-
morphism), which is more convenient for an implementation. Since we as-
sume long filters, which is common in acoustical signal processing, the time-
consuming convolution can be carried out in the frequency domain by exploit-
ing the efficiency of the so-called fast convolution.

In this chapter we derive the basic framework for single-channel system
identification and inverse modeling of an FIR filter, based on overlap-save tech-
niques. The update equations are derived from those of Chapter 2 and are sum-
marized in Table E.5 and Table E.9. It is interesting to see that many of them
are related to known algorithms for single-channel blind deconvolution.

4.1 Identification of an unknown gain

Before we start to analyze the general single-channel case, where the unknown
system is modeled as an FIR filter, we analyze the most simple system, namely
one described by a simple complex gain. We introduce the use of the polyno-
mial projection operator defined in Appendix D.2 to describe the system model
and to derive the update equations.

4.1.1 Model

In the single-channel case, we can describe the unknown system by a complex
scalara. The known input sequence is described by its two-sidedz-transform

s(z) ,

TsX
t=�Ts

stz
�t (4.2)
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where the length of the input sequence is2Ts+1. The input-output behavior is
then described by

xt = ast + nt = zt Pt;t (as(z) + n(z)) (4.3)

x(z) ,

TxX
t=�Tx

xtz
�t =

TxX
t=�Tx

Pt;t (as(z) + n(z)) (4.4)

= P�Tx;Tx (as(z) + n(z)) (4.5)

wherex(z) is the known output sequence of finite length2Tx+1 andn(z) is the
sensor noise. Note that we define the observation time to be symmetric around
the time origin, i.e. from�Tx to +Tx. We allow thatTx 6= Ts, however, we
require thatTs � Tx. P (:) denotes the polynomial projection operator defined
in Appendix D.2.

We give three different methods to identify the unknown gaina: (i) an
online learning algorithm, where the update is carried out sample by sample,
(ii) a batch algorithm, where the update depends on the estimation error of
the whole data sequence, and (iii) a block-wise algorithm, where the update is
carried out block wise.

4.1.2 Online learning algorithm

With an online learning algorithm we process the estimation and adaptation on
a sample rate basis. Leth = ^a denote the estimation ofa. We then have

^xt = htst = ztPt;t (htst) (4.6)

and the estimation error

ext , xt � ^xt . (4.7)

For the update at discrete timet we aim at minimizingjextj2. As an example,
if we use LMS1-Hx we have

ht+1 = ht + �exts
�
t (4.8)

= ht + �Pt;t (ex(z)) P�t;t (s(z)) (4.9)

= ht + �P0;0
�
extz
�ts�(z)
�

(4.10)

= P0;0
�
ht + � extz
�ts�(z)
�

(4.11)

where we usedPt;t (ex(z)) = extz
�t, P�t;t (s(z)) = s�t z
+t, andP0;0 (ht) =

ht. Other update equations for gain identification are given in Table E.4.
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4.1.3 Batch learning algorithm

With a batch learning algorithm we use the estimation error of the whole data
sequence for the update ofh = ^a. Letk denote the iteration index. At iteration

k, the estimation sequence^xk(z) is

^xt;k = hkst = zt Pt;t (hkst) (4.12)

^xk(z) ,

TxX
t=�Tx

^xt;kz
�t (4.13)

= P�Tx;Tx (hks(z)) (4.14)

and the estimation error sequenceexk(z) is

ext;k , xt � ^xt;k (4.15)

exk(z) ,

TxX
t=�Tx

ext;kz
�t (4.16)

= x(z)� ^xk(z) . (4.17)

At iterationk we wish to minimizekexk(z)k2F where the normk:kF is defined
in (C.18). Batch learning is equal to averaging the update over the whole data
sequence ofL = 2Tx + 1 samples. As an example, if we use LMS1-Hx and
average the update (4.8) over the whole sequence, we get

hk+1 = hk +

�

2Tx + 1

TxX
t=�Tx

ext;ks
�
t (4.18)

= hk +

�

2Tx + 1

TxX
t=�Tx

Pt;t (exk(z)) P�t;t (s(z)) (4.19)

= hk +

�

2Tx + 1
P0;0 (exk(z)s
�(z)) (4.20)

= P0;0
�

hk +

�

2Tx + 1
exk(z)s
�(z)

�

(4.21)

where we used (D.43),P�Tx;Tx (exk(z)) = exk(z), andP0;0 (hk) = hk. Other
batch learning algorithms can be derived with Table E.4, analogously to LMS1-
Hx.
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4.1.4 Block-wise learning algorithm

We now modify the system model slightly such that the input, the noise, and the
output sequence have infinite length. The system output is still given byxt =

ast + nt. We partition the output sequence into consecutive, non-overlapping
blocks of block lengthL = 2Tx+1 samples. Withk we denote the block index.
We can then describe the output sequence asx(z) =

P1
k=�1 xk(z)z

�kL with

xk(z) ,

TxX
t=�Tx

xkL+t z
�t = P�Tx;Tx; (ask(z) + nk(z)) (4.22)

where

sk(z) ,

TsX
t=�Ts

skL+t z
�t = P�Ts;Ts;
�
zkL s(z)

�

(4.23)

is the input sequence of blockk and

nk(z) ,

TxX
t=�Tx

nkL+t z
�t = P�Tx;Tx;
�
zkL n(z)

�

(4.24)

is the noise sequence of blockk. Note, we haven(z) =
P1

k=�1 nk(z) z
�kL,

however,s(z) =
P1

k=�1 sk(z) z
�kL is only true ifTs = Tx. Usually we have

Ts > Tx. Analogously, we can partition the estimation sequence as^x(z) =P1
k=�1 ^xk(z)z

�kL where at blockk we have

^xt;k = hkst = zt Pt;t (hks(z)) (4.25)

^xk(z) ,

TxX
t=�Tx

^xkL+t;kz
�t = P�Tx;Tx; (hksk(z)) . (4.26)

Accordingly, the estimation error sequence can be written as

ex(z) =
P1

k=�1 exk(z)z
�kL with

exk(z) ,

TxX
t=�Tx

exkL+t;kz
�t (4.27)

= xk(z)� ^xk(z) (4.28)

= P�Tx;Tx; ([a� hk]sk(z) + nk(z)) . (4.29)
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The update is performed at the block rate, where in blockk we aim at mini-
mizingkexk(z)k2F . This is equal to averaging the update over a whole block of

L = 2Tx + 1 samples. As an example, if we use LMS1-Hx we have

hk+1 = hk +

�

2Tx + 1

kL+TxX
t=kL�Tx

exts
�
t (4.30)

= hk +

�

2Tx + 1

kL+TxX
t=kL�Tx

Pt;t
�
exk(z)z
�kL
� P�t;t �sk(z)z�kL� (4.31)

= hk +

�

2Tx + 1

TxX
t=�Tx

Pt;t (exk(z)) P�t;t (sk(z)) (4.32)

= hk +

�

2Tx + 1
P0;0 (exk(z)s
�
k(z)) (4.33)

= P0;0
�

hk +

�

2Tx + 1
exk(z)s
�
k(z)

�

(4.34)

Other block-wise learning algorithms can be derived analogously to LMS1-Hx
with the sample-wise update equations of Table E.4.

The block-wise learning algorithm is different from the batch algorithm in
the sense that instead of using the same input block of2Tx+1 samples for every
iteration, a new input block with2Tx + 1 samples is taken for every iteration.
Furthermore, by settingTx to zero (L= 1) the block-wise learning algorithm
degenerates to the online learning algorithm of Section 4.1.2.

4.2 Single-channel identification

We now extend the model of the unknown single-channel system from being
an unknown gaina to an FIR filtera(z), see Fig. 4.1.
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ext

nt

s t xt

x̂t

a(z)

ht(z)

Figure 4.1: Single-channel identification. The filterh(z) is adapted such that

h(z) � a(z).

4.2.1 Model

For the single-channel case, we can describe the unknown system by a single
polynomial, the two sidedz-transform

a(z) ,

NaX
n=�Na

anz
�n . (4.35)

With this definition, we allow the system to be non-causal, asa(z) also has
positive powers ofz. For a causal system we havea�1 = � � � = a�Na = 0,
orP�Na;�1 (a(z)) = 0. The known input sequences(z) is given in (4.2). The
input-output behavior is then described by

xt = ztPt;t (a(z)s(z) + n(z)) (4.36)

x(z) ,

TxX
t=�Tx

xtz
�t = P�Tx;Tx (a(z)s(z) + n(z)) (4.37)

wherex(z) is the output sequence of finite length2Tx + 1 andn(z) is the
sensor-noise sequence. The description is similar to the one in Section 4.1.1
except thata is replaced bya(z).

The error criterion which we aim at minimizing is

E
�jextj2
	
= ka(z)� ht(z)k2F �2s + �2n (4.38)
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with �2s , E
�jstj2	, �2n , E
�jntj2	, and the assumption thats(z) and

n(z) are uncorrelated, i.e.hs(z); n(z)iF = 0. This is equal to minimizing

ka(z)� ht(z)k2F .

Just as in Section 4.1, we now describe an online, a batch, and a block-wise
learning algorithm for identification, with the extension, that an FIR filter is
adapted.

4.2.2 Online learning algorithm

With an online learning algorithm we process the estimation and adaptation at
the sample rate. Leth(z) = ^a(z) denote the estimation ofa(z)

h(z) ,

NhX
n=�Nh

hnz
�n (4.39)

with Nh � Na. We then have

^xt = ztPt;t (ht(z)s(z)) (4.40)

whereht(z) is the estimate ofa(z) at timet and

ext , xt � ^xt (4.41)

is the corresponding estimation error at discrete timet. For the update att we
aim at minimizingjextj2. As an example, if we use LMS1-Hx we have

hn;t+1 = hn;t + �exts
�
t�n (4.42)

ht+1(z) = ht(z) + �Pt;t (ex(z)) P�t�Nh;t+Nh

(s(z)) (4.43)

= ht(z) + �P�Nh;Nh

�
extz
�ts�(z)
�

(4.44)

= P�Nh;Nh

�
ht(z) + �extz
�ts�(z)
�

. (4.45)

where we usedP�Nh;Nh (ht(z)) = ht(z). Other update equations for single-
channel identification can be derived from Table E.4.

4.2.3 Batch learning algorithm

With a batch learning algorithm we use the estimation error of the whole data
sequence for the update ofh(z) = ^a(z). Let k denote the iteration index. At
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iterationk, the estimation sequence^xk(z) is

^xt;k = zt Pt;t (hk(z)s(z)) (4.46)

^xk(z) ,

TxX
t=�Tx

^xt;kz
�t = P�Tx;Tx (hk(z)s(z)) . (4.47)

The linear convolution (4.47) is illustrated in Fig. 4.2 (top). The estimation
error sequenceexk(z) is

ext;k , xt � ^xt;k (4.48)

exk(z) ,

TxX
t=�Tx

ext;kz
�t (4.49)

= x(z)� ^xk(z) (4.50)

= P�Tx;Tx ([a(z)� hk(z)] s(z) + n(z)) . (4.51)

At iterationk we wish to minimizekexk(z)k2F . This is equal to averaging the
update over the whole data sequence of2Tx +1 samples. As an example, if we
use LMS1-Hx we have

hn;k+1 = hn;k +

�

2Tx + 1

TxX
t=�Tx

ext;k s
�
t�n (4.52)

hk+1(z) = hk(z) +

�

2Tx + 1

NhX
n=�Nh

TxX
t=�Tx

Pt;t (exk(z)) P�t�n;t�n (s(z))

(4.53)

= hk(z) +

�

2Tx + 1

TxX
t=�Tx

Pt;t (exk(z)) P�t�Nh;t+Nh

(s(z)) (4.54)

= P�Nh;Nh

�
hk(z) +

�

2Tx + 1
exk(z)s
�(z)

�

. (4.55)

where we used (D.54),P�Tx;Tx (exk(z)) = exk(z), andP�Nh;Nh (hk(z)) =

hk(z) in the last step. We require thatTs � Tx +Nh. Other update equations
for a batch learning algorithm can be derived with Table E.4, analogously to
LMS1-Hx.
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circular convolution

linear convolution

x̂Ts−Nh

x̂

∗

~

s −Ts s 0 s Ts

h−Nh
h0 hNh

x̂−Ts−Nh

s

h

x̂−Ts+Nh
x̂Ts+Nh

x̂0 x̂Ts−Nh

h ∗ s

x̂−Ts+Nh
x̂0

s −Ts

x̂−Ts+Nh
x̂0

x̂

h̃ ~ ˜s

s Tss 0

h−Nh
h0 hNh

x̂Ts+Nh

h̃

x̂Ts−Nh
x̂−Ts−Nh

x̂−Ts+Nh
x̂0 x̂Ts−Nh

˜s

zerosdata

Figure 4.2: Batch learning algorithm (Tx=Ts�Nh, C � 2 (Ts +Nh) + 1):
(top) linear convolution^x(z) = P�Tx;Tx (h(z) s(z)), (bottom) cir-

cular convolution^x(z) = P�Tx;Tx

�
~PC (h(z) s(z))

�
.
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4.2.4 Block-wise learning algorithm
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xk(z)

hk(z)

s (z)

s k−1(z)

s k(z)

hk−1(z)

hk+1(z)

xk−1(z)

xk(z)

xk+1(z)

xk−1(z)

x(z)

wrap-around effectszerosdata

Figure 4.3: Overlap-save technique. The output sequence is partitioned into
non-overlapping blocks.

We change the system model slightly such that the input, the noise, and the
output sequence have infinite length. The system output is still given byxt =

Pt;t (a(z)s(z) + n(z)). We now apply the overlap-save technique [84], where
the output sequence is partitioned into consecutive, non-overlapping blocks of
lengthL = 2Tx + 1, as shown in Fig. 4.3. Withk we denote the block index.
We can then describe the output sequence asx(z) =

P1
k=�1 xk(z)z

�kL with

xk(z) ,

TxX
t=�Tx

xkL+tz
�t = P�Tx;Tx; (a(z)sk(z) + nk(z)) (4.56)

wheresk(z) andnk(z) are defined in (4.23) and (4.24). According to the
overlap-save technique [84], we require thatTs � Tx + Nh. Therefore two
consecutive input blockssk�1(z) andsk(z) overlap. We can partition the esti-
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mation sequence as^x(z) =
P1

k=�1 ^xk(z)z
�kL where at blockk we have

^xt;k = zt Pt;t (hk(z)sk(z)) (4.57)

^xk(z) ,

TxX
t=�Tx

^xt+kL;k z
�t = P�Tx;Tx; (hk(z)sk(z)) . (4.58)

Accordingly, the estimation error sequence can be written as

ex(z) =
P1

k=�1 exk(z)z
�kL with

exk(z) ,

TxX
t=�Tx

exkL+t;kz
�t (4.59)

= xk(z)� ^xk(z) (4.60)

= P�Tx;Tx; ([a(z)� hk(z)]sk(z) + nk(z)) . (4.61)

The update is proceeded at the block rate, where in blockk we aim at mini-
mizingkexk(z)k2F . This is equal to averaging the update over a whole block of

L = 2Tx + 1 samples. As an example, if we use LMS1-Hx we have

hn;k+1 = hn;k +

�

2Tx + 1

kL+TxX
t=kL�Tx

ext s
�
t�n (4.62)

hk+1(z) = hk(z) +

�

2Tx + 1

TxX
t=�Tx

Pt;t (exk(z)) P�t�Nh;t+Nh

(sk(z)) (4.63)

= P�Nh;Nh

�
hk(z) +

�

2Tx + 1
exk(z)s
�
k(z)

�

. (4.64)

Note the similarity between (4.64) and (4.55). Other block-wise learning algo-
rithms can be derived analogously to LMS1-Hx with the sample-wise update
equations of Table E.4.

4.2.5 Some remarks

The block-wise learning algorithm is related to the batch learning algorithm, but
instead of using the same block of2Tx + 1 samples for every iteration, a new
input block with2Tx + 1 samples is chosen for every iteration. Furthermore,
by settingTx to zero (L=1) the block-wise learning algorithm degenerates to
an online learning algorithm.
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With Na = 1 andNh = 1 the model and the algorithms described in this
section reduce to those in Section 4.1. We first focused on this most simple
case, because it already shows some fundamental concepts and introduces the
mathematical formulation in a simple way.

4.2.6 Identification of a causal system

In a first step, we treat a causal system as a special case of a non-causal sys-
tem. By making only minor changes in the system description and in the update
equation, we obtain almost the same algorithms as in previous sections. The un-
known causal systema(z) and the corresponding estimationh(z) are described
by

a(z) ,

NaX
n=0

anz
�n (4.65)

h(z) ,

NhX
n=0

hnz
�n . (4.66)

The system outputx(z), the estimation^x(z), and the error signalex(z) are
derived analogously to the non-causal system. Minor changes are made in the
update equations, namely in the parameters of the projection operator, and we
use again the LMS1-Hx for demonstration. The update equations of the online
learning algorithm given in Section 4.2.2 become

ht+1(z) = ht(z) + �Pt;t (ex(z)) P�t�Nh;t (s(z)) (4.67)

= P0;Nh

�
ht(z) + �extz
�ts�(z)
�

(4.68)

those of the batch algorithm from Section 4.2.3 change to

hk+1(z) = hk(z) +

�

2Tx + 1

TxX
t=�Tx

Pt;t (exk(z)) P�t�Nh;t (s(z)) (4.69)

= P0;Nh

�
hk(z) +

�

2Tx + 1
exk(z)s
�(z)

�

(4.70)
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and those of the block-wise learning algorithm from Section 4.2.4 become

hk+1(z) = hk(z) +

�

2Tx + 1

kL+TxX
t=kL�Tx

Pt;t
�
z�kLexk(z)

� P�t�Nh;t (sk(z))

(4.71)

= P0;Nh

�
hk(z) +

�

2Tx + 1
exk(z)s
�
k(z)

�

. (4.72)

In these steps, we have essentially omitted the computation of the update of the
non-causal filter part.

4.2.7 Extension to circular convolution

We now wish to consider the case where long filters are involved. Since the
filter operation is a linear convolution, we are interested in an efficient imple-
mentation of the linear convolution. From Section 3.2.3 we know that there
exists a fast implementation of the circular convolution by using the FFT. We
also know that every linear convolution can be carried out by a circular convo-
lution of appropriate size. Therefore we modify the filter and update equations
such that we can apply a circular convolution, and find the necessary conditions.

Batch learning algorithm

Non-causal system We consider the learning algorithm of Section 4.2.3, where
a non-causal filter is estimated. At iterationk, the estimation sequence^xk(z)

is given in (4.47). We carry out the following modification

^xk(z) = P�Tx;Tx (hk(z)s(z)) (4.73)

= P�Tx;Tx

�
~PC (hk(z)s(z))

�

(4.74)

With the help of the circular projection operator~P (:), defined in Section D.2,
we have actually included the computation of a circular convolution. Equality
holds if

C � 2Ts + 1 � 2(Tx +Nh) + 1 (4.75)
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where the inequality on the right guarantees that every element of^xk(z) is free
from boundary effects, e.g.,^xt is a sum of2Nh+1 elements, and the inequality
on the left guarantees that at least the2Tx + 1 center elements of the circu-
lar convolution ~PC (hk(z)s(z)) coincide with those of the linear convolution

hk(z)s(z). The circular convolution (4.74) is illustrated in Fig. 4.2 (bottom).

We can proceed the same way for the update equations. Again we use
LMS1-Hx as an example. Starting With (4.55), we carry out the following
modification

hk+1(z) = hk(z) +

�

2Tx + 1
P�Nh;Nh (exk(z)s
�(z)) (4.76)

= hk(z) +

�

2Tx + 1
P�Nh;Nh

�
~PC (exk(z)s
�(z))
�

(4.77)

which holds for (4.75), just as for the filtering in (4.74).

Causal system In case of a causal system, (4.75) changes to
C � 2Ts + 1 � Ts + Tx +Nh + 1 (4.78)

which means that for the same FFT sizeC, L = Ts + Tx + 1 output elements
coincide with the linear convolution, as opposed to the non-causal case where
we haveL = 2Tx + 1.

Some algorithms have more than one convolution in their update equation.
If the same technique is applied, where a circular convolution is incorporated
into the update equations, the corresponding FFT sizeC actually depends on
the length of all sequences which are involved in the convolution. However, if

Tx is at least as large asNh, the error of the wrap-around effect of the circular
convolution harms the estimationh(z) only slightly, especially whens(z) is a
white signal.

Block-wise learning algorithm

As already mentioned in Section 4.2.5, the difference between a batch and
block-wise learning algorithm is basically whether the update iterations are
done with the same, or with new input data. Therefore we can do the same
modifications for a block-wise learning algorithm, as for the batch algorithm,
described in the previous section. By simply substitutingsk(z) in place ofs(z)
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in (4.74) and (4.77), we obtain the filtering and update equations of LMS1-Hx,
wherek now denotes the block index. The same constraints (4.75) and (4.78)
for C hold.

4.3 Efficient implementation of single-channel sys-
tem identification by transformation into the
frequency domain

In the following, we are interested in computationally efficient implementa-
tions of the concepts described in Section 4.2.7. To this end, we transform the
filtering and the update of the filter coefficients into the frequency domain.

4.3.1 Online learning algorithm

Usually, for an online learning algorithm, with adaptation being carried out at
the sample rate, the filtering and the adaptation remain in the time domain.
However, it might still be worth carrying out the adaptation in the frequency
domain (or more generally, thetransform domain) if the autocorrelation ma-
trix of the input signals has a large eigenvalue spread, which slows down the
convergence rate. The DFT tends to decorrelate the input signal for a large
DFT lengthC and therefore a bin-wise step-size normalization can be applied
to speed up the convergence [77].

4.3.2 Batch learning algorithm

The whole batch learning algorithm for system identification is given on page
104 from (4.80) to (4.95). Since we have all data available, we can adapt a
non-causal filter.

The following comments can be made:

� In (4.80), the constraint on the minimum size of the number of input
samples2Ts + 1 is given for the case where we have2Tx + 1 output
samples and where we wish to adapt2Na + 1 filter coefficients. If the
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number of input samples is limited, we can also read (4.80) asTx �

Ts�Nh. We then see that only2(Ts�Nh)+1 output samples should be
used to build the estimation error. The constraint on the minimum FFT
size isC � 2Ts + 1 and guarantees that the output samples in~^xk are
free of wrap-around effects stemming from the circular convolution. The
FFT sizeC can be even and is usually chosen to be a power of two.

� The initial settings(k = 0) for the algorithm are given from (4.82) to
(4.87). Note that the elements with index zero are arranged to be the
first elements of the time-domain vectors. From there, the causal part
(or samples from the future) is located in the first elements of the vector,
whereas the non-causal part (or samples from the past) is located at the
end of the vectors. This makes it easy to transform the filter and update
equations, derived in thez-domain, into the domain of circulant matrices,

with the isomorphic mapping^x(z)= ~PC (h(z)s(z)) �= ~^X= ~H~S �= �^X=

�H�S.

� In (4.88), we define the projection matrix

P�h = F ~P�Nh;Nh F
�1 = F

2664
INh+1 0 0

0 0 0

0 0 INh

3775
C�C

F�1 (4.79)

which is used in (4.95) to reset the center elements of~hk+1 to zero af-
ter every update. This is the same technique which is widely known in
frequency-domain adaptive filtering [36,96].~P�Nh;Nh is defined accord-
ing to (3.12). Sometimes thisfilter projection operationis omitted to
reduce the computational complexity of the algorithm. The price for this
is that the output signal is disturbed by wrap-around effects of the circular
convolution. However, simulations have shown that the filter projection
operation (4.95) helps for a faster and more smooth convergence of the
algorithm. A good compromise is to carry out projection operations once
every few blocks.

� In (4.89), the filtering (convolution)~PC (hk(z)s(z)) �= ~Hk
~S, with ~Hk=

C(~hk) and~S = C(~s), is carried out in the frequency domain. In (4.90)
the 2Tx + 1 elements which belong to the linear convolution^xk(z) =

P�Tx;Tx

�
~PC (hk(z)s(z))

�

are extracted, as seen in (4.91).



104 Chapter 4. Single-channel identification and inverse modeling

Batch learning algorithm for SISO system identification

Definitions and initialization(k = 0):

C � 2Ts + 1 � 2 (Tx +Nh) + 1 (4.80)

L = 2Tx + 1 (4.81)

~x = (x0; : : : ; xTx ; 0; : : : ; 0; x�Tx ; : : : ; x�1)
T (4.82)

�X = diag [F~x] (4.83)

~s = (s0; : : : ; sTs; 0; : : : ; 0; s�Ts; : : : ; s�1)
T (4.84)

�S = diag [F~s] (4.85)

~h0 = (h0; : : : ; hNh; 0; : : : ; 0; h�Nh; : : : ; h�1)
T (4.86)

�H0 = diag
h
F~h0

i

(4.87)

P�h = F ~P�Nh;Nh F
�1 (4.88)

For every iterationk = 1; 2; 3; : : ::

1. Filtering:

�^Xk = �Hk
�S (4.89)

~^xk = ~P�Tx;Tx F
�1 diag
�
�^Xk
�

(4.90)

= (^x0; : : : ; ^xTx ; 0; : : : ; 0; ^x�Tx ; : : : ; ^x�1)
T (4.91)

2. Adaptation error:

~exk
= ~x� ~^xk (4.92)

�Exk
= diag

�
F~exk

�

(4.93)

3. Update equations:

�H0
k+1 = any update equation from Table E.5 (4.94)

�Hk+1 = diag
�
P�h diag

�
�H0
k+1

��

(4.95)
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Block-wise learning algorithm for SISO system identification

Definitions and initialization(k = 0):

C � 2Ts + 1 � Ts + Tx +Nh + 1 (4.96)

L = Ts + Tx + 1 (4.97)

~h0 = (h0; : : : ; hNh; 0; : : : ; 0)
T (4.98)

�H0 = diag
h
F ~h0

i
(4.99)

P�h = F ~P0;Nh F
�1 (4.100)

For every blockk = 1; 2; 3; : : ::

1. Filtering:

~xk = (xkL; : : : ; xkL+Ts; 0; : : : ; 0; xkL�Tx ; : : : ; xkL�1)
T (4.101)

�Xk = diag [F~xk] (4.102)

~sk = (skL; : : : ; skL+Ts; 0; : : : ; 0; skL�Ts; : : : ; skL�1)
T (4.103)

�Sk = diag [F~sk] (4.104)

�^Xk = �Hk
�Sk (4.105)

~^xk = ~P�Tx;TsF
�1 diag
�
�^Xk
�

(4.106)

= (^xkL; : : : ; ^xkL+Ts; 0; : : : ; 0; ^xkL�Tx ; : : : ; ^xkL�1)
T (4.107)

2. Adaptation error:

~exk = ~xk � ~^xk (4.108)

�Exk
= diag

�
F~exk

�

(4.109)

3. Update equations:

�H0
k+1 = any update equation from Table E.5 (4.110)

�Hk+1 = diag
�
P�h diag

�
�H0
k+1

��

(4.111)
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� In (4.92), we build the adaptation error in the time domain and~exk
�=

exk(z) consists ofL = 2Tx + 1 non-zero elements. In (4.93) the error
vector~exk

is transformed into the frequency domain, where it is used for
the update.

� Any update equation listed in Table E.5 can be used for the adaptation.
The RLS-type algorithms additionally require the update of a correlation
matrix, which is also carried out in the frequency domain. As mentioned
above, (4.95) constrains the center elements of~hk to be zero after every
adaptation.

4.3.3 Block-wise learning algorithm

The whole block-wise learning algorithm for system identification is given on
page 105 from (4.96) to (4.111). Conceptually, the block-wise and batch learn-
ing algorithm are almost equal, except that we now adapt a causal filterh(z).

The following comments can be made:

� In contrast to the batch algorithm where we adapted a non-causal filter
of length2Nh + 1, we now adapt a causal filter of lengthNh + 1. If we
use the same FFT lengthC as for the batch algorithm, we can choose
a larger block lengthL, as given in (4.97). We also see from (4.108),
(4.101), (4.106), and (4.107), thatL = Ts + Tx + 1 output samples are
now used to build the block estimation error.

� In (4.100), we define the projection matrix

P�h = F ~P0;Nh F
�1 = F

24 INh+1 0

0 0
35C�CF�1 (4.112)

which is used in (4.111) to zero pad~hk+1 after every update. Note the
difference between (4.100) and (4.88).

� If we use the LMS1-Hx for the update and chooseC = 2Ts+1, the block-
wise learning algorithm is equivalent to the one proposed by Ferrara in
[36,37], except for a permuted arrangement of the elements.
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� Any update equation listed in Table E.5 can be used for the adaptation.
The RLS-type algorithms additionally require the update of a correlation
matrix.

4.4 Single-channel inverse modeling

xts t ut

nt

s t−d

est

a(z)

z−d

wt(z)

Figure 4.4: Causal realization of single-channel equalization. The causal filter

w(z) is adapted such thatgt(z) = wt(z)a(z) � z�d. The de-
lay of d samples allows the inclusion of the non-causal part of the
expansion ofa�1(z).

The setup of inverse modeling, inverse-system identification, or system
equalization is shown in Fig. 4.4. The model is the same as described in Sec-
tion 4.2.1, where the unknown filter is allowed to be non-causal. The global
system response is

gt(z) = wt(z)a(z) . (4.113)

The error criterion which we aim at minimizing is

E
�jestj2
	
= k1� gt(z)k2F �2s + kwt(z)k2F �2n (4.114)

wheres(z) andn(z) are assumed to be uncorrelated, i.e.hs(z); n(z)iF = 0,
and�2s , E
�jstj2	 and�2n , E
�jntj2	. In the noise-free case, this is equal

to minimizing k1� gt(z)kF , which gives thezero-forcingsolutionw(z) =

a�1(z).

Just as in Section 4.2, we now describe an online, a batch, and a block-wise
learning algorithm, however, now for single-channel inverse modeling instead
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of simply for a gaina. The derivations are almost the same, therefore we skip,
now and again, a few steps.

4.4.1 Online learning algorithm

With an online learning algorithm we process the estimation and adaptation at
the sample rate. Letw(z) = ^a�1(z) denote the estimation ofa�1(z)

w(z) ,

NwX
n=�Nw

wnz
�n . (4.115)

We then have

ut = ztPt;t (wt(z)x(z)) (4.116)

wherewt(z) is ^a�1(z) at discrete timet, and

est , st � ut (4.117)

is the corresponding estimation error. At time instantt, we takejestj2 as the
error criterion which we wish to minimize. As an example, the LMS3-Ws
becomes

wn;t+1 = wn;t + �estx
�
t�n (4.118)

wt+1(z) = wt(z) + �Pt;t (est(z)) P�t�Nw;t+Nw

(x(z)) (4.119)

= P�Nw;Nw

�
wt(z) + �estz
�tx�(z)
�

(4.120)

wherePt;t (est(z)) = estz
�t andes(z) ,
P

t estz
�t.

Other update equations for single-channel inverse modeling can be derived
with the update equations for inverse-gain identification from Table E.8, simi-
larly to LMS3-Ws.

4.4.2 Batch learning algorithm

For the batch learning algorithm we use the estimation error of the whole data
sequence for the update ofwk(z), wherek denotes the iteration index. At
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iterationk, the sequence outputuk(z) is

ut;k = zt Pt;t (wk(z)x(z)) (4.121)

= zt Pt;t (gk(z)s(z) + wk(z)n(z)) (4.122)

uk(z) ,

TuX
t=�Tu

ut;kz
�t = P�Tu;Tu (wk(z)x(z)) (4.123)

= P�Tu;Tu (gk(z)s(z) + wk(z)n(z)) (4.124)

with gk(z) = wk(z)a(z). The estimation error sequenceesk(z) is

est;k , st � ut;k (4.125)

esk(z) ,

TuX
t=�Tu

est;kz
�t (4.126)

= P�Tu;Tu (s(z)� uk(z)) (4.127)

= P�Tu;Tu ([1� gk(z)] s(z)� wk(z)n(z)) . (4.128)

At iterationk we wish to minimizekesk(z)k2F . This is equal to averaging the
update over the whole data sequence ofL = 2Tu + 1 samples. As an example,
if we use LMS3-Ws we have

wn;k+1 = wn;k +

�

2Tu + 1

TuX
t=�Tu

est;k x
�
t�n (4.129)

wk+1(z) = wk(z) +

�

2Tu + 1

TuX
t=�Tu

Pt;t (esk(z)) P�t�Nw;t+Nw

(x(z))

(4.130)

= P�Nw;Nw

�
wk(z) +

�

2Tu + 1
esk(z)x
�(z)

�

(4.131)

where we used (D.54),P�Tu;Tu (esk(z)) = esk(z), andP�Nw;Nw (wk(z)) =

wk(z). Other batch learning algorithms can be derived with Table E.8, analo-
gously to LMS3-Ws.

4.4.3 Block-wise learning algorithm

We change the system model slightly such that the input, the noise, and the
output sequence have infinite length. Similarly to Section 4.2.4 we apply the
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overlap-save technique, where the output sequenceu(z) is partitioned into con-
secutive, non-overlapping blocks of lengthL = 2Tu + 1. With k we de-
note the block index. We can then describe the output sequence asu(z) =P1

k=�1 uk(z)z
�kL with

ut;k = ztPt;t (wk(z)x(z)) (4.132)

= ztPt;t (gk(z)s(z) + wk(z)n(z)) (4.133)

uk(z) ,

TuX
t=�Tu

ukL+tz
�t (4.134)

= P�Tu;Tu; (wk(z)xk(z)) (4.135)

= P�Tu;Tu; (gk(z)sk(z) + wk(z)nk(z)) (4.136)

wheresk(z) is the system input sequence defined in (4.23), withTs � Tx +Na.
According to the overlap-save technique [84], we require thatTx � Tu +Nw.
The estimation error sequence can be written as

es(z) =
P1

k=�1 esk(z)z
�kL with (4.117) and

esk(z) ,

TuX
t=�Tu

eskL+t;kz
�t (4.137)

= P�Tu;Tu; (sk(z)� uk(z)) (4.138)

= P�Tu;Tu; ([1� gk(z)]sk(z) + wk(z)nk(z)) . (4.139)

The update is processed at the block rate, where in blockk we aim at mini-
mizingkesk(z)k2F . This is equal to averaging the update over a whole block of

L = 2Tu + 1 samples. As an example, if we use LMS3-Ws we have

wn;k+1 = wn;k +

�

2Tu + 1

kL+TuX
t=kL�Tu

est x
�
t�n (4.140)

wk+1(z) = wk(z) +

�

2Tu + 1

TuX
t=�Tu

Pt;t (esk(z)) P�t�Nw;t+Nw

(xk(z))

(4.141)

= P�Nw;Nw

�
wk(z) +

�

2Tu + 1
esk(z)x
�
k(z)

�

(4.142)

where we used (D.54) in the last step. Further block-wise learning algorithms
for single-channel inverse modeling can be derived analogously to LMS3-Ws
with the sample-wise update equations of Table E.8.
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4.4.4 Extension to circular convolution

We follow the same ideas as in Section 4.2.7, where we consider the case where
long filters are involved. Again we modify the filter and update equations such
that we can apply a circular convolution, and find the necessary conditions.

Batch learning algorithm

We consider the learning algorithm of Section 4.4.2, where we adapt a non-
causal filter to possibly invert a nonminimum-phase system. To this end, we
replace the linear convolution, given in (4.123), by a circular convolution, i.e.,

uk(z) = P�Tu;Tu (wk(z)x(z)) (4.143)

= P�Tu;Tu

�
~PC (wk(z)x(z))

�

. (4.144)

Equality holds for

C � 2Tx + 1 � 2(Tu +Nw) + 1 . (4.145)

The inequality on the right guarantees that every element ofuk(z) is free from
boundary effects, e.g.,ut is a sum of2Nw + 1 elements, and the inequality
on the left guarantees that at least the2Tu + 1 center elements of the circu-
lar convolution~PC (wk(z)x(z)) coincide with those of the linear convolution

wk(z)x(z).

We can proceed the same way for the update equations. Again we use
LMS3-Ws as an example. Starting With (4.131), we obtain

wk+1(z) = wk(z) +

�

2Tu + 1
P�Nw;Nw (esk(z)x
�(z)) (4.146)

= wk(z) +

�

2Tu + 1
P�Nw;Nw

�
~PC (esk(z)x
�(z))
�

(4.147)

which holds for (4.145), just as for the filtering in (4.144).

Block-wise learning algorithm

Substitutingxk(z) for x(z) in (4.144) and (4.147) gives the filtering and update
equations of LMS3-Ws. The same constraint (4.145) forC hold.k now denotes
the block index.
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4.5 Efficient implementation of single-channel in-
verse modeling

In the following, we are interested in computationally efficient implementations
of the concepts described in Section 4.4.4.

4.5.1 Online learning algorithm

See comments in Section 4.3.1.

4.5.2 Batch learning algorithm

The whole batch learning algorithm for inverse modeling is given on page 114
from (4.148) to (4.163). The algorithm is designed such that it can adapt a
non-causal filter.

The following comments can be made:

� In (4.148), the constraint on the minimum size of the number of input
samples2Tx + 1 is given for the case where we have2Tu + 1 output
samples and where we wish to adapt2Nw + 1 filter coefficients. The
FFT sizeC is usually chosen to be a power of two.

� In (4.157), the filtering (convolution)~PC (wk(z)x(z)) �= ~Wk
~X, with

~Wk = C(~wk) and ~X = C(~x), is carried out in the frequency domain.
In (4.158) the2Tu + 1 elements which belong to the linear convolution

uk(z)=P�Tu;Tu

�
~PC (wk(z)x(z))

�

are extracted, as seen in (4.159).

� In (4.160), the adaptation error is build in the time domain and then trans-
formed in (4.161) into the frequency domain where it is used afterwards
for the update.

� Any update equation listed in Table E.9 can be used for the adaptation.
The RLS-type algorithms additionally require the update of a correlation
matrix.
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For further information, see also the comments in Section 4.3.2 for the batch
learning algorithm for system identification.

4.5.3 Block-wise learning algorithm

The whole block-wise learning algorithm for inverse modeling is given on page
115 from (4.164) to (4.179). As opposed to the the block-wise learning algo-
rithms for system identification, described in Section 4.5.3, we adapt a non-
causal filter, to cope also with a nonminimum-phase systema(z). In fact, since
we introduce a delay in the reference signal, shown in Fig. 4.4, a part of the
non-causal part ofwk(z) becomes causal.

The following comments can be made:

� In (4.169), we introduce a delay ofd samples for the reference signal

s(z). With�Nw � d � Nw, we can steer the center of gravity ofwk(z)

within the2Nw + 1 filter taps. Special cases are:d = �Nw if a(z) is
minimum phase,d = +Nw if a(z) is maximum phase, andd = 0 if

a(z) is mixed phase. The parameterd can also be adjusted during the
adaptation, depending on the shape of the envelope ofwk(z).

� Any update equation listed in Table E.9 can be used for the adaptation.
The RLS-type algorithms additionally require the update of a correlation
matrix.

Further comments can be found in Section 4.3.3 for the batch learning algo-
rithm for system identification.
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Batch learning algorithm for SISO inverse modeling

Definitions and initialization(k = 0):

C � 2Tx + 1 � 2 (Tu +Nw) + 1 (4.148)

L = 2Tu + 1 (4.149)

~s = (s0; : : : ; sTu; 0; : : : ; 0; s�Tu; : : : ; s�1)
T (4.150)

�S = diag (F~s) (4.151)

~x = (x0; : : : ; xTx ; 0; : : : ; 0; x�Tx ; : : : ; x�1)
T (4.152)

�X = diag (F~x) (4.153)

~w0 = (w0; : : : ; wNw ; 0; : : : ; 0; w�Nw ; : : : ; w�1)
T (4.154)

�W0 = diag (F ~w0) (4.155)

P�w = F ~P�Nw;Nw F
�1 (4.156)

For every iterationk = 1; 2; 3; : : ::

1. Filtering:

�Uk = �Wk
�X (4.157)

~uk = ~P�Tu;Tu F
�1 diag
�
�Uk
�

(4.158)

= (u0; : : : ; uTu; 0; : : : ; 0; u�Tu; : : : ; u�1)
T (4.159)

2. Adaptation error:

~esk
= ~s� ~uk (4.160)

�Esk
= diag

�
F~esk

�

(4.161)

3. Update equations:

�W0
k+1 = any update equation from Table E.9 (4.162)

�Wk+1 = diag
�
P�w diag

�
�W0
k+1

��

(4.163)
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Block-wise learning algorithm for SISO inverse modeling

Definitions and initialization(k = 0):

C � 2Tx + 1 � 2 (Tu +Nw) + 1 (4.164)

L = 2Tu + 1 (4.165)

~w0 = (w0; : : : ; wNw ; 0; : : : ; 0; w�Nw ; : : : ; w�1)
T (4.166)

�W0 = diag (F ~w0) (4.167)

P�w = F ~P�Nw;Nw F
�1 (4.168)

For every blockk = 1; 2; 3; : : ::

1. Filtering:

~sk = (skL�d; : : : ; skL+Tu�d; 0; : : : ; 0; skL�Tu�d; : : : ; skL�1�d)
T

(4.169)

�Sk = diag (F~sk) (4.170)

~xk = (xkL; : : : ; xkL+Tx ; 0; : : : ; 0; xkL�Tx ; : : : ; xkL�1)
T (4.171)

�Xk = diag (F~xk) (4.172)

�Uk = �Wk
�Xk (4.173)

~uk = ~P�Tu;Tu F
�1 diag
�
�Uk
�

(4.174)

= (ukL; : : : ; ukL+Tu; 0; : : : ; 0; ukL�Tu; : : : ; ukL�1)
T (4.175)

2. Adaptation error:

~esk
= ~sk � ~uk (4.176)

�Esk = diag
�
F~esk

�

(4.177)

3. Update equations:

�W0
k+1 = any update equation from Table E.9 (4.178)

�Wk+1 = diag
�
P�w diag

�
�W0
k+1

��

(4.179)
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4.6 Wiener filter

In analogy to the instantaneous mixing problem stated in Chapter 2, we can
now formulate theWiener-Hopf equations(WHE) for the single-channel con-
volutive case. To this end we define the following correlation sequences

rxs(z) ,

1X
�=�1

rxs� z
�� (4.180)

where we have, in the deterministic case,

rxs� , lim
T!1

1
2T + 1

TX
t=�T

xts
�
t�� (4.181)

and in the stochastic case

rxs� , E fxt+�s�t g = E
�
xts
�
t��

	

. (4.182)

Likewise we definerss (z), rsx(z), rxx(z), r^xs(z), rux(z), rexs(z), andresx(z).

4.6.1 Wiener filter hMMSE-x(z)

Infinite-length Wiener filter The Wiener-Hopf equation for the single-channel
identification problem can be derived by theorthogonality principle, which
says that the error signal must be uncorrelated with the input signal

rexs(z) = 0 . (4.183)

For an infinite-length filterh(z) =
P1

n=�1 hnz
�n and the error signalext=

xt � ^xt we have

rexs(z) = rxs(z)� r^xs(z) (4.184)

= rxs(z)� h(z)rss(z) . (4.185)

Using (4.185) in (4.183), we obtain the Wiener-Hopf equation

h(z)rss (z) = rxs(z) . (4.186)

Solving (4.186) forh(z) yields

hMMSE-x(z) = rxs(z)r
�1
ss (z) (4.187)

wherehMMSE-x(z) is the Wiener filter which minimizesE
�jextj2
	

. Note the
analogy between (4.187) and (2.8) defined in Section 2.2.1.
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Finite-length Wiener filter The Wiener-Hopf equation for a finite-length fil-
terh(z) =

Pb
n=a hnz

�n is given by

Pa;b (Pa;b (h(z)) rss (z)) = Pa;b (rxs(z)) . (4.188)

If we assume that the input signal is white, i.e.rss(z) = rss0 , then (4.188)
becomes

h(z)rss0 = Pa;b (rxs(z)) . (4.189)

Solving (4.189) forh(z) gives

hMMSE-x(z) =

1
rss0
Pa;b (rxs(z)) . (4.190)

4.6.2 Wiener filterwMMSE-s(z)

Infinite-length Wiener filter The Wiener-Hopf equation for the single-channel
inverse-modeling problem can also be derived by theorthogonality princi-
ple [57]. Again, the error signal must be uncorrelated to the input signal which
gives now

resx(z) = 0 . (4.191)

For an infinite-length filterw(z) =
P1

n=�1 wnz
�n and the error signalest=

st � ut we have

resx(z) = rsx(z)� rux(z) (4.192)

= rsx(z)� w(z)rxx(z) . (4.193)

Using (4.193) in (4.191), we obtain the Wiener-Hopf equation

w(z)rxx(z) = rsx(z) . (4.194)

Solving (4.194) forw(z) yields

wMMSE-s(z) = rsx(z)r
�1
xx (z) (4.195)

wherewMMSE-s(z) is the Wiener filter which minimizesE
�jestj2
	

. Note the
analogy between (4.195) and (2.61) defined in Section 2.5.1.
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Finite-length Wiener filter The Wiener-Hopf equation for a finite-length fil-
terw(z) =

Pb
n=a wnz

�n is

Pa;b (Pa;b (w(z)) rxx(z)) = Pa;b (rsx(z)) (4.196)

which can be written with (D.14) as

bX
�=a

P�;� (Pa;b (w(z)) rxx(z)) =
bX

�=a
P�;� (rsx(z)) . (4.197)

Unfortunately (4.196) is not as easily solvable as (4.188), sincex(z) is a non-
white sequence and thereforerxx(z) does not consist of a single term. Thus,
we have to setup a system ofb � a + 1 linear equations to obtain the filter
coefficientswn. These equations are obtained by evaluating (4.197) for every
powerz� for a � � � b. From the left side of (4.197) we rewrite

Pa;b (w(z)) rxx(z) =
 
bX

n=a
wnz
�n

! 
1X

k=�1

rxxkz
�k

!

(4.198)

=

bX
n=a

1X
k=�1

wn rxxkz
�(n+k) (4.199)

=

1X
m=�1

z�m

bX
n=a

wn rxxm�n (4.200)

where we used the substitutionm= k + n. Inserting (4.200) into the left side
of (4.197) yields

bX
�=a

P�;� (Pa;b (w(z)) rxx(z)) =
bX

�=a
P�;�

 
1X

m=�1

z�m

bX
n=a

wn rxxm�n
!

(4.201)

=

bX
�=a

z��

bX
n=a

wn rxx��n . (4.202)

The right side of (4.197) is

bX
�=a

P�;� (rsx(z)) =
bX

�=a
rsx� z
�� . (4.203)
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Evaluating now (4.197) for every powerz�� , (a � � � b), and using (4.202)
and (4.203) gives the following set of equations

bX
n=a

wn rxx��n = rsx� (a � � � b) . (4.204)

The equations in (4.204) can be written in matrix form26664
rxx0 : : : rxxa�b

...
. . .

...

rxxb�a : : : rxx0

37775�
26664
wa

...

wb
37775 =
26664
rsxa

...

rsxb
37775 . (4.205)

Solving this system of linear equations, which involves a matrix inversion of
dimension(b� a + 1)� (b� a + 1), yields the coefficientswn of wMMSE-s(z).
Special cases are witha = 0 andb = Nw (causal Wiener filter), or witha =

�Nw andb = Nw.

Approximation of wMMSE-s(z)

We now derive an approximation of the finite-length Wiener filterwMMSE-s(z) of
(4.196). We thereby use the existence of a fast implementation of the circular
convolution, and a fast implementation of the inverse of a circular matrix.

We use the following approximations:~rxx(z) , ~PC (rxx(z)) � rxx(z)

or ~rxx(z) , PC (rxx(z)) � rxx(z), and~rsx(z) , ~PC (rsx(z)) � rsx(z)

or ~rsx(z) , PC (rsx(z)) � rsx(z), whereC is chosenlarge enough, such
thatkrxx(z)� ~rxx(z)kF andkrsx(z)� ~rsx(z)kF become very small. We can
now state a new equation similar to (4.196)

~w(z) ~rxx(z) = ~rsx(z) (4.206)

~PC
�
~w(z) ~rxx(z) ~r
�1
xx (z)

�
= ~PC

�
~rsx(z) ~r
�1
xx (z)

�

(4.207)

The left hand side of (4.207) gives exactly~w(z) and the inversion in right hand
side of (4.207) can be computed by the inversion of a circular matrix, which
requires two FFT operations and an element-wise inversion of aC-dimensional
vector (Eq. (3.123)). Finally we have

wMMSE-s(z) � Pa;b
�
~PC
�
~rsx(z)~r
�1
xx (z)

��

. (4.208)
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4.7 Performance measures

We use the following performance measures for single-channel identification
and inverse modeling:

� Average MSE ofex of blockk:

JMSE-x(k) =

1

2Tx + 1

kL+TxX
t=kL�Tx

jextj2 =

1

2Tx + 1
kexk(z)k2F . (4.209)

� Average MSE ofes of blockk:

JMSE-s(k) =

1

2Tu + 1

kL+TuX
t=kL�Tu

jestj2 =

1

2Tu + 1
kesk(z)k2F . (4.210)

� Average block intersymbol interferenceJISI(gk(z)) of block k, where

JISI(:) is defined in (6.131) andgk(z) = wk(z)a(z).

4.8 Simulations

4.8.1 Hearing-instrument feedback-path

In this example, the filtera(z) is a real measured hearing-instrument feedback-
path from [115]. The impulse responses ofa(z) anda�1(z), as well as the
corresponding transfer functions are shown in Fig. 4.5. We normalizeda(z)

such thatka(z)k2F = 1. The sample frequency isfs = 1=T = 16 kHz, where

T denotes the sampling period.

4.8.2 System identification

For the system-identification simulation we take the block-wise learning algo-
rithm from page 105, except that we adapt a non-causal filter with2Nh + 1

filter coefficients. We haveTs = 1000, Nh = 200, Tx = Ts� Nh = 800, the
block sizeL = 2Tx + 1 = 1601, and the FFT sizeC = 2048. The input signal
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Figure 4.5: Hearing-instrument feedback-patha(z): Top: Impulse response
of a(z) and a�1(z). Bottom: Magnitude of transfer function

ja(ej2�fT )j andja�1(ej2�fT )j. From the two-sided expansion of

a�1(z) we see thata(z) must be non-minimum phase.
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and the sensor noise are white Gaussian signals with�s = 1 and�n = 0:01

(�40 dB), respectively. The parameters of the algorithms are

LMS1-Hx � = 0:15

LMS2-Hx � = 0:1

LMS3-Hs � = 0:1

RLS1-Hx � = 0:2

RLS2-Hs � = 0:2.

The performance curves ofJMSE-x andJMSE-sare show in Fig. 4.6, those forJISI

in Fig. 4.7.JMSE-x is evaluated directly withhk(z), JMSE-sandJISI are evaluated
with P�Nw;Nw

�
h�1k (z)

�

andgk(z) = P�Nw;Nw

�
h�1k (z)

�
a(z), respectively,

with Nw = 300.

We can make the following observations:

� The RLS-based algorithms converge faster than the LMS-based algo-
rithms and achieve about�40 dB for JMSE-x.

� Among the LMS-based algorithms, the LMS1-Hx has the fastest conver-
gence, and also the lowest values forJMSE-x, JMSE-s, andJISI in the steady
state.

� The LMS3-Hs has a very slow convergence. This is caused by the high
eigenvalue spread of the input autocorrelation matrixRxx �= rxx(z) =

a(z) rss(z) a
�(z) = j a(z)j2, see alsoja(f)j in Fig. 4.5.

� We see thatJMSE-x approaches�40 dB, which is what we expect from
(4.38), as�40 dB is just the SNR of the sensor signalx. However,JMSE-s

does not go below about�20 dB. This observation was already made in
Section 2.10 for the identification of an ill-conditioned mixing matrix.

� At first sight, the forgetting factor� = 0:2 seems to be very small. How-
ever, since we have a large block lengthL, there are enough samples
within a block for the estimation of the correlation matrices.

4.8.3 Inverse modeling

For the inverse-modeling-identificationsimulation we take the block-wise learn-
ing algorithm from page 115. We haveTx = 1000,Nw = 300,Tu = Tx�Nw =
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700, the block sizeL = 2Tu + 1 = 1401, and the FFT sizeC = 2048. The
input signal and the sensor noise are white Gaussian signals with�s = 1 and

�n = 0:01 (�40 dB SNR), respectively. The parameters of the algorithms are

LMS1-Wx � = 0:15

LMS2-Wx � = 0:1

LMS3-Ws � = 0:1

RLS1-Wx � = 0:2
RLS2-Ws � = 0:2

The performance curves ofJMSE-x andJMSE-s are show in Fig. 4.8, those for

JISI in Fig. 4.9.JMSE-s andJISI are evaluated directly withwk(z) andgk(z) =

wk(z) a(z), respectively,JMSE-x is evaluated withP�Nh;Nh

�
w�1k (z)

�

withNh =

200.

We can make the following observations:

� Again, the RLS-based algorithms converge faster than the LMS-based
algorithms.

� Among the LMS-based algorithms, the LMS1-Wx has the fastest conver-
gence and also the lowest values forJMSE-x, JMSE-s, andJISI in the steady
state.

� The final steady-state value ofJMSE-x is higher in all simulations than
that for the system-identification simulations.

� JMSE-s reaches only about�20 dB, and not�40 dB for two reasons.
Since we have normalizedka(z)kF = 1 anda(z) is not an allpass filter,
we haveka�1(z)kF > 1. Insertinga�1(z) for wk(z) in (4.114), gives

ka�1(z)kF �2n > �2n, which is one reason whyJMSE-s is higher than

�40 dB. The second reason is because we use only finitely many co-
efficients to estimatea�1(z). We can decomposea�1(z) � wk(z) =�P�Nw;Nw

�
a�1(z)

�� wk(z)
�
+

�
a�1(z)�P�Nw;Nw

�
a�1(z)

��

. The
second term does not vanish, because of the finite length ofwk(z), and
therefore the termk1�P�Nw;Nw

�
a�1(z)

�
a�1(z)kF �2s remains also as
residual error inJMSE-s, even forP�Nw;Nw

�
a�1(z)� wk(z)

�
= 0.

� Again, the LMS3-Ws has a very slow convergence.
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Figure 4.6: Performance curves of system identification:JMSE-x(k) (solid) and

JMSE-s(k) (dashed). From top: LMS1-Hx, LMS2-Hx, LMS3-Hs,
RLS1-Hx, and RLS2-Hs.
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Figure 4.7: Performance curves of system identification:JISI(k). From top:
LMS1-Hx, LMS2-Hx, LMS3-Hs, RLS1-Hx, and RLS2-Hs.
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Figure 4.8: Performance curves of inverse modeling:JMSE-x(k) (solid) and

JMSE-s(k) (dashed). From top: LMS1-Wx, LMS2-Wx, LMS3-Ws,
RLS1-Wx, and RLS2-Ws.

4.8. Simulations 127

0 20 40 60 80 100
−40

−30

−20

−10

0

10

block  k

J IS
I   

   
 [d

B
]

0 20 40 60 80 100
−40

−30

−20

−10

0

10

block  k

J IS
I   

   
 [d

B
]

0 20 40 60 80 100
−40

−30

−20

−10

0

10

block  k

J IS
I   

   
 [d

B
]

0 20 40 60 80 100
−40

−30

−20

−10

0

10

block  k

J IS
I   

   
 [d

B
]

0 20 40 60 80 100
−40

−30

−20

−10

0

10

block  k

J IS
I   

   
 [d

B
]

Figure 4.9: Performance curves of inverse modeling:JISI(k). From top:
LMS1-Wx, LMS2-Wx, LMS3-Ws, RLS1-Wx, and RLS2-Ws.
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The performance curves reveal, that with a smallJMSE-x or JMSE-s, theJISI

is also small, and vice versa. Furthermore, the simulations show, that the algo-
rithms reveal a similar behavior as their counterparts in Section 2.

4.9 Summary

In this section we have described the single-channel case of system identifica-
tion and inverse modeling. We have focused on the situation, where the un-
known channel filter islong. Hence, from the computational point of view,
it is worth carrying out the filtering and the adaptation in the frequency do-
main. Together with the concepts from Chapter 2, where we have analyzed the
multichannel instantaneous-mixing case, we now have the tools necessary for
dealing with the general multichannel case, as shown also in the commutative
diagram in Fig. 1.2.

Alternatively to the overlap-save technique, where the output sequence is
subdivided into consecutive, non-overlapping blocks, we could also use an
adaptive algorithm with an overlap-add technique [18, 19, 98], where the in-
put sequence is subdivided into non-overlapping blocks, as shown in Fig. 4.10.

The blind counter part of inverse modeling, i.e. blind deconvolution, will
be described in Section 6.8.
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Figure 4.10: Overlap-add technique. The input sequence is partitioned into
non-overlapping blocks.



Chapter 5

Multichannel identification
and inverse modeling

In this chapter we combine the instantaneous-mixing case from Chapter 2 with
the single-channel convolution case from Chapter 4, see also Fig. 1.2.

5.1 Rules for the multichannel extension

As shown in Fig. 1.2, we can extend either the single-channel convolutive-
mixing case, or the multichannel instantaneous-mixing case to the multichannel
convolutive-mixing case.

Single-channel to multichannel extension(a(z)! A(z)) To extend the
update equations from Chapter 4 for the single-channel convolutive-mixing
case to the multichannel counterpart, we use the following rules:

� A polynomiala(z) is replaced by a polynomial matrixA(z) or a poly-
nomial vectora(z).

� Complex conjugation is replaced by Hermitian transposition.

131
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� A circulant matrix~A is replaced by a block circulant matrixeA.

� A diagonal matrix�A is replaced by a block diagonal matrixA.

� The Fourier matrixF and the inverse Fourier matrixF�1 are replaced by

T andT�1, respectively, whereT is defined in (3.7).

Extending the instantaneous-mixing case to the convolutive-mixing case

(A! A(z)) To extend the update equations from Chapter 2 for the instanta-
neous mixing case to the convolutive mixing case, we use the following rules:

� Depending on the context, a matrixA is replaced either by a polynomial
matrixA(z), a block circulant matrixeA, or a block diagonal matrixA.

� Depending on the context, a vectora is replaced either by a polynomial
vectora(z), a block circulant matrixeA, or a block diagonal matrixA.

� We apply the polynomial projection operatorP or the circular polyno-
mial projection operator~P after every operation in thez-domain, as we
are interested in filters and time sequences of finite length.

Similar rules are given in [34,69,71].

With these rules we extend the system description and the adaptive algo-
rithms to the multichannel convolutive-mixing case.

5.2 Description of the multichannel system

Convolutive-mixing matrix We use the same multichannel convolutive-mixing
model, as described in Section 1.2, except that the unknown system has now
finite length

A(z) ,

NaX
n=�Na

Anz
�n = [aij(z)] (5.1)

aij(z) ,

NaX
n=�Na

aij;nz
�n i = 1; : : : ;M

j = 1; : : : ;Ms .
(5.2)
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Environment The Multichannel extension of Section 4.2.1 is as follows: The
input sequences(z) of length2Ts + 1 is

s(z) ,

TsX
t=�Ts

stz
�t . (5.3)

The input-output behavior of the model is defined as

xt = ztPt;t (A(z) s(z) + n(z)) (5.4)

x(z) ,

TxX
t=�Tx

xtz
�t = P�Tx;Tx (A(z) s(z) + n(z)) (5.5)

wherex(z) is the output sequence of finite length2Tx + 1. The elements of

n(z) contain the sensor-noise sequences, and have also length2Tx + 1.

5.3 Multichannel system identification

In multichannel system identification, we wish to find a polynomial matrix
H(z) ,

NhX
n=�Nh

Hnz
�n = [hij(z)] (5.6)

hij(z) ,

NhX
n=�Nh

hij;nz
�n i = 1; : : : ;M

j = 1; : : : ;Ms .
(5.7)

such that

^x(z) , P�Tx;Tx (H(z) s(z)) (5.8)

is an estimate ofx(z) with the corresponding estimation error

ex(z) , x(z)� ^x(z) (5.9)

= P�Tx;Tx ([A(z)�H(z)] s(z) + n(z)) . (5.10)

5.3.1 Batch learning algorithm for multichannel system iden-
tification

This section is the multichannel extension of Section 4.2.3 and 4.2.7.
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Description in the z-domain In analogy with (4.47), the multichannel esti-
mation sequence is

^xt;k = ztPt;t (Hk(z) s(z)) (5.11)

^xk(z) ,

TxX
t=�Tx

^xt;kz
�t = P�Tx;Tx (Hk(z) s(z)) (5.12)

wherek denotes the iteration index. Introducing a circular convolution similar
to (4.74), gives

^xk(z) = P�Tx;Tx

�
~PC (Hk(z) s(z))

�

(5.13)

which also holds for (4.75), i.e.,C � 2Ts + 1 � 2(Tx + Nh) + 1. For the
adaptation we choose again the LMS1-Hx as an example. Extending (4.55)
gives

Hn;k+1 = P�Nh;Nh

�
Hk(z) +

�

2Tx + 1
exk(z) s
H(z)

�

(5.14)

or

Hk+1(z) = Hk(z) +

�

2Tx + 1
P�Nh;Nh

�
~PC
�
exk(z) s
H(z)
��

(5.15)

if we include a circular convolution similar to (4.77). Note, that the complex
conjugation was replaced by a Hermitian transposition.

Fast implementation The whole batch learning algorithm for multichannel
system identification is given on page 136 from (5.17) to (5.32). Since we have
all data available, we adapt a non-causal filter. The algorithm is the multichan-
nel extension of the algorithm described in Section 4.3.2.

The following comments can be made:

� The circular convolution~PC (Hk(z) s(z)), which is a part of (5.13) is
calculated in (5.26) in the frequency-domain. Note, that we have the

isomorphism~PC (Hk(z) s(z)) �= e^Xk = eHk
eS �= ^Xk = Hk S. The

projection operationP�Tx;Tx (:) in (5.13) is carried out in (5.27) in the
time domain.
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� Any update equation listed in Table E.6 can be used for the adaptation.
The RLS-type algorithms additionally require the update of a block cor-
relation matrix.

� The projection operationP�Nh;Nh (:) in (5.14) or (5.15), which con-
strains the polynomials inHk+1(z) to have only2Nh+1 terms, is carried
out in (5.32). To this end, theM2 filters are transformed into the time
domain, padded with zeros, and transformed back into the frequency do-
main. The projection matrix~P�Nh;Nh is defined according to (3.13).

5.3.2 Block-wise learning for multichannel system identifica-
tion

This section is the multichannel extension of Section 4.2.4 and 4.2.7. The dif-
ference to the batch learning algorithm is thatk denotes now the block index,
and for each adaptation step, a new input block

sk(z) ,

TsX
t=�Ts

skL+t z
�t = P�Ts;Ts;
�
zkL s(z)

�

(5.16)

is used, instead of the whole sequences(z). Similarly to the single-channel
case, we use an overlap-save technique.

Fast implementation The whole block-wise learning algorithm for multi-
channel system identification is given on page 137 from (5.33) to (5.48). We
adapt a causal filterH(z). The algorithm is the multichannel extension of the
algorithm described in Section 4.3.3.

The following comments can be made:

� Since we adapt a causal filter, the constraints in (5.33) are slightly differ-
ent to (5.17). Similarly, the block lengthL in (5.34) is defined differently
from that in (5.18).

� Any update equation listed in Table E.6 can be used for the adaptation.
The RLS-type algorithms additionally require the update of a block cor-
relation matrix.

� The projection matrix~P0;Nh is defined according to (3.12).
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Batch learning algorithm for MIMO system identification

Definitions and initialization(k = 0):

C � 2Ts + 1 � 2 (Tx +Nh) + 1 (5.17)

L = 2Tx + 1 (5.18)

~xm = (xm;0; : : : ; xm;Tx ; 0; : : : ; 0; xm;�Tx ; : : : ; xm;�1)
T (5.19)

X =
�
�Xm
�
= [diag (F~xm)] (5.20)

~sm = (sm;0; : : : ; sm;Ts; 0; : : : ; 0; sm;�Ts; : : : ; sm;�1)
T (5.21)

S =
�
�Sm
�
= [diag (F~sm)] (5.22)

~hij;0 = (hij;0; : : : ; hij;Nh; 0; : : : ; 0; hij;�Nh; : : : ; hij;�1)
T (5.23)

H0 =
�
�Hij;0
�
=

h
diag

�
F~hij;0

�i

(5.24)

P�h = F ~P�Nh;Nh F
�1 (5.25)

For every iterationk = 1; 2; 3; : : ::

1. Filtering:

^Xk = Hk S (5.26)

~^xm;k = ~P�Tx;Tx F
�1 diag
�
�^Xm;k
�

(5.27)

= (^xm;0; : : : ; ^xm;Tx ; 0; : : : ; 0; ^xm;�Tx ; : : : ; ^xm;�1)
T (5.28)

2. Adaptation error:

~exm;k
= ~xm � ~^xm;k (5.29)

Exk
=

h
�Exm;k

i
=

h
diag

�
F~exm;k

�i

(5.30)

3. Update equations:

H
0
k+1 = any update equation from Table E.6 (5.31)

�Hij;k+1 = diag
�
P�h diag

�
�H0
ij;k+1

��

(5.32)
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Block-wise learning algorithm for MIMO system identification

Definitions and initialization(k = 0):

C � 2Ts + 1 � Ts + Tx +Nh + 1 (5.33)

L = Ts + Tx + 1 (5.34)

~hij;0 = (hij;0; : : : ; hij;Nh; 0; : : : ; 0)
T (5.35)

H0 =
�
�Hij;0
�
=

h
diag

�
F ~hij;0

�i
(5.36)

P�h = F ~P0;Nh F
�1 (5.37)

For every blockk = 1; 2; 3; : : ::

1. Filtering:

~xm;k = (xm;kL; : : : ; xm;kL+Ts; 0; : : : ; 0; xm;kL�Tx ; : : : ; xm;kL�1)
T

(5.38)

Xk =
�
�Xm;k
�
= [diag (F~xm;k)] (5.39)

~sm;k = (sm;kL; : : : ; sm;kL+Ts; 0; : : : ; 0; sm;kL�Ts; : : : ; sm;kL�1)
T

(5.40)
Sk =

�
�Sm;k
�
= [diag (F~sm;k)] (5.41)

^Xk = Hk Sk (5.42)

~^xm;k = ~P�Tx;TsF
�1 diag
�
�^Xm;k
�

(5.43)

= (^xm;kL; : : : ; ^xm;kL+Ts; 0; : : : ; 0; ^xm;kL�Tx ; : : : ; ^xm;kL�1)
T

(5.44)
2. Adaptation error:

~exm;k
= ~xm � ~^xm;k (5.45)

Exk
=

h
�Exm;k

i
=

h
diag

�
F~exm;k

�i

(5.46)

3. Update equations:

H
0
k+1 = any update equation from Table E.6 (5.47)

�Hij;k+1 = diag
�
P�h diag

�
�H0
ij;k+1

��

(5.48)
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5.4 Multichannel inverse modeling

In multichannel inverse modeling, we wish to find a polynomial matrix

W(z) ,

NwX
n=�Nw

Wnz
�n = [wij(z)] (5.49)

wij(z) ,

NwX
n=�Nw

wij;nz
�n i; j = 1; : : : ;M (5.50)

such that

G(z) =W(z)A(z) (5.51)

becomes close to the unity matrixI. Thus,

u(z) , P�Tu;Tu (W(z)x(z)) (5.52)

is an estimate ofs(z) with the corresponding extimation error

es(z) , P�Tu;Tu (s(z)� u(z)) (5.53)

= P�Tu;Tu ([I�W(z)A(z)] s(z)�W(z)n(z)) . (5.54)

5.4.1 Batch learning algorithm for multichannel inverse mod-
eling

This section is the multichannel extension of Section 4.4.2 and 4.4.4.

Description in the z-domain In analogy to (4.123), the multichannel estima-
tion sequence is

ut;k = zt Pt;t (Wk(z)x(z)) (5.55)

= zt Pt;t (Gk(z) s(z) +Wk(z)n(z)) (5.56)

uk(z) ,

TuX
t=�Tu

ut;kz
�t = P�Tu;Tu (Wk(z)x(z)) (5.57)

= P�Tu;Tu (Gk(z) s(z) +Wk(z)n(z)) (5.58)
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Introducing a circular convolution similar to (4.144), gives

uk(z) = P�Tu;Tu

�
~PC (Wk(z)x(z))

�

. (5.59)

which also holds for (4.145), i.e.,C � 2Tx + 1 � 2(Tu + Nw) + 1. For the
adaptation we choose again the LMS3-Ws as an example. Extending (4.131)
gives

Wk+1(z) = P�Nw;Nw

�
Wk(z) +

�

2Tu + 1
esk(z)x
H(z)

�

(5.60)

or

Wk+1(z) =Wk(z) +

�

2Tu + 1
P�Nw;Nw

�
~PC
�
esk(z)x
H(z)
��

(5.61)

if we include a circular convolution similar to (4.147). Note, that the complex
conjugation was replaced by a Hermitian transposition.

Fast implementation The whole batch learning algorithm for multichannel
inverse modeling is given on page 140 from (5.62) to (5.77). The algorithm is
designed such that it can adapt a non-causal filter. The algorithm is the multi-
channel extension of the algorithm described in Section 4.5.2.

The following comment can be made:
� Any update equation listed in Table E.10 can be used for the adaptation.

The RLS-type algorithms additionally require the update of a block cor-
relation matrix.

See also the comments in Section 5.3.1.
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Batch learning algorithm for MIMO inverse modeling

Definitions and initialization(k = 0):

C � 2Tx + 1 � 2 (Tu +Nw) + 1 (5.62)

L = 2Tu + 1 (5.63)

~sm = (sm;0; : : : ; sm;Tu; 0; : : : ; 0; sm;�Tu; : : : ; sm;�1)
T (5.64)

S =
�
�Sm
�
= [diag (F~sm)] (5.65)

~xm = (xm;0; : : : ; xm;Tx ; 0; : : : ; 0; xm;�Tx ; : : : ; xm;�1)
T (5.66)

X =
�
�Xm
�
= [diag (F~xm)] (5.67)

~wij;0 = (wij;0; : : : ; wij;Nw ; 0; : : : ; 0; wij;�Nw ; : : : ; wij;�1)
T (5.68)

W0 =
�
�Wij;0
�
= [diag (F ~wij;0)] (5.69)

P�w = F ~P�Nw;Nw F
�1 (5.70)

For every iterationk = 1; 2; 3; : : ::

1. Filtering:

Uk =WkX (5.71)

~um;k = ~P�Tu;Tu F
�1 diag
�
�Um;k
�

(5.72)

= (um;0; : : : ; um;Tu; 0; : : : ; 0; um;�Tu; : : : ; um;�1)
T (5.73)

2. Adaptation error:

~esm;k
= ~sm � ~um;k (5.74)

Esk
=

h
�Esm;k

i
=

h
diag

�
F~esm;k

�i

(5.75)

3. Update equations:

W

0
k+1 = any update equation from Table E.10 (5.76)

�Wij;k+1 = diag
�
P�w diag

�
�W0
ij;k+1

��

(5.77)
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Block-wise learning algorithm for MIMO inverse modeling

Definitions and initialization(k = 0):

C � 2Tx + 1 � 2 (Tu +Nw) + 1 (5.78)

L = 2Tu + 1 (5.79)

~wij;0 = (wij;0; : : : ; wij;Nw ; 0; : : : ; 0; wij;�Nw ; : : : ; wij;�1)
T (5.80)

W0 =
�
�Wij;0
�
= [diag (F ~wij;0)] (5.81)

P�w = F ~P�Nw;Nw F
�1 (5.82)

For every blockk = 1; 2; 3; : : ::

1. Filtering:

~sm;k = (sm;kL�d;:::; sm;kL+Tu�d; 0;:::; 0; sm;kL�Tu�d;:::; sm;kL�d�1)
T

(5.83)

Sk =
�
�Sm;k
�
= [diag (F~sm;k)] (5.84)

~xm;k = (xm;kL; : : : ; xm;kL+Tx ; 0; : : : ; 0; xm;kL�Tx ; : : : ; xm;kL�1)
T

(5.85)

Xk =
�
�Xm;k
�
= [diag (F~xm;k)] (5.86)

Uk =WkXk (5.87)
~um;k = ~P�Tu;Tu F
�1 diag
�
�Um;k
�

(5.88)

= (um;kL; : : : ; um;kL+Tu; 0; : : : ; 0; um;kL�Tu; : : : ; um;kL�1)
T

(5.89)

2. Adaptation error:

~esm;k
= ~sm;k � ~um;k (5.90)

Esk
=

h
�Esm;k

i
=

h
diag

�
F~esm;k

�i

(5.91)

3. Update equations:

W

0
k+1 = any update equation from Table E.10 (5.92)

�Wij;k+1 = diag
�
P�w diag

�
�W0
ij;k+1

��

(5.93)
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5.4.2 Block-wise learning for multichannel inverse modeling

This section is the multichannel extension of Section 4.4.3 and 4.4.4.

Fast implementation The whole block-wise learning algorithm for multi-
channel inverse modeling is given on page 141 from (5.78) to (5.93). We adapt
a non-causal filter matrix, to cope also with a nonminimum-phase systemA(z).
The algorithm is the multichannel extension of the algorithm described in Sec-
tion 4.5.3.

The following comment can be made:

� Any update equation listed in Table E.10 can be used for the adaptation.
The RLS-type algorithms additionally require the update of a block cor-
relation matrix.

See also the comments in Section 5.3.2.

5.5 Multichannel Wiener filter

We now extend the single-channel Wiener filters, given in Section 4.6 for the
system-identification and inverse-modeling problem, to the multichannel case.

Correlation matrices in the z-domain In analogy to the instantaneous mix-
ing problem stated in Chapter 2, we can formulate theWiener-Hopf equations
(WHE) for the multichannel convolutive-mixing case. To this end we define
the following correlation sequences

Rxs(z) ,

1X
�=�1

Rxs� z
�� (5.94)

where we have in the deterministic case

Rxs� , lim
T!1

1
2T + 1

TX
t=�T

xts
H
t�� (5.95)
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and in the stochastic case

Rxs� , E
�
xt+�s
H
t

	
= E

�
xts
H
t��

	

. (5.96)

Likewise we defineRss(z),Rsx(z), Rxx(z),Rux(z),R^xs(z), Rexs(z), and

Resx(z)

5.5.1 Multichannel Wiener filter HMMSE-x(z)

Infinite-length Wiener filter The Wiener-Hopf equation for the multichan-
nel identification problem can be derived by theorthogonality principle, which
says, that the error-signal vector must be uncorrelated to the input-signal vector

Rexs(z) = 0 . (5.97)

For an infinite-length filterH(z) =
P1

n=�1Hnz
�n and the error-signal vec-

tor ext=xt � ^xt we have

Rexs(z) = Rxs(z)�R^xs(z) (5.98)

= Rxs(z)�H(z)Rss(z) . (5.99)

Using (5.99) in (5.97), we finally obtain the Wiener-Hopf equation

H(z)Rss(z) = Rxs(z) (5.100)

Solving (5.100) forH(z) yields

HMMSE-x(z) = Rxs(z)R
�1
ss (z) . (5.101)

whereHMMSE-x(z) is the Wiener filter which minimizesE
�kextk22
	

. Note the
analogy between (5.101), (4.187), and (2.8).

Finite-length Wiener filter The Wiener-Hopf equation for a finite-length
multichannel filterH(z) =

Pb
n=aHnz

�n is given by

Pa;b (Pa;b (H(z))Rss(z)) = Pa;b (Rxs(z)) . (5.102)

Furthermore, if the input-signal sequencessm(z) are white and mutually un-
correlated, we haveRss(z) = Rss0 , and therefore (5.102) simplifies to

H(z)Rss0 = Pa;b (Rxs(z)) . (5.103)
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Solving (5.103) yiels then the finite-length multichannel Wiener filter

HMMSE-x(z) = Pa;b (Rxs(z)) R�1
ss0

. (5.104)

Note the analogy between (5.104), (4.190), and (2.8).

5.5.2 Multichannel Wiener filterWMMSE-s(z)

Infinite-length Wiener filter The Wiener-Hopf equation for the multichan-
nel inverse-modeling problem can be derived also by the orthogonality prin-
ciple. Again, the error-signal vector must be uncorrelated to the input-signal
vector which gives now

Resx(z) = 0 . (5.105)

For an infinite-length filterW(z) =

P1
n=�1Wnz

�n and the error-signal
vectorest=st � ut we have

Resx(z) = Rsx(z)�Rux(z) (5.106)

= Rsx(z)�W(z)Rxx(z) . (5.107)

Using (5.107) in (5.105), we finally obtain the Wiener-Hopf equation

W(z)Rxx(z) = Rsx(z) . (5.108)

Solving (5.108) forW(z) yields

WMMSE-s(z) = Rsx(z)R
�1
xx(z) (5.109)

whereWMMSE-s(z) is the multichannel Wiener filter which minimizesE
�kestk22
	

.
Note the analogy between (5.109), (4.195), and (2.61).

Finite-length Wiener filter In analogy to (5.102), the Wiener-Hopf equation
for a finite-length multichannel filterW(z) =

Pb
n=aWnz

�n is

Pa;b (Pa;b (W(z))Rxx(z)) = Pa;b (Rsx(z)) . (5.110)

Similar to the single-channel case, (5.110) is not as easily solvable as (5.102),
sincexm(z) are non-white, mutually correlated sequences and thereforeRxx(z)

does not consist of a single term. Thus, we have to setup a system ofb� a+1
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linear matrix equations to obtain the filter coefficientsWn. These equations
are obtained by evaluating (5.110) for every powerz� for a � � � b. Doing
the same steps as from (4.196) to (4.204) yields

bX
n=a

Wn Rxx��n = Rsx� (a � � � b) . (5.111)

The equations in (5.111) can be written in matrix form26664
Rxx0 : : : Rxxa�b

...
. . .

...

Rxxb�a : : : Rxx0

37775�
26664
Wa

...
Wb

37775 =
26664
Rsxa

...

Rsxb
37775 . (5.112)

Solving this system of linear equations, which involves a matrix inversion of
dimension(b � a + 1)M � (b � a + 1)M , yields the coefficientsWn of

WMMSE-s(z). Special cases are witha = 0 andb = Nw (causal multichannel
Wiener filter), or witha = �Nw andb = Nw.

5.6 Performance measures

We use the following performance measures for multichannel identification and
inverse modeling:

� Average MSE ofext of blockk:

JMSE-x(k) =

1

2Tx + 1

kL+TxX
t=kL�Tx

kextk2F =

1

2Tx + 1
kexk(z)k2F .

(5.113)

� Average MSE ofest of blockk:

JMSE-s(k) =

1

2Tu + 1

kL+TuX
t=kL�Tu

kestk2F =

1

2Tu + 1
kesk(z)k2F . (5.114)

� Average block interchannel interferenceJICI(Gk(z)) of block k, where

JICI(:) is defined in (6.132) andGk(z) =Wk(z)A(z).
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� Average block intersymbol interferenceJISI(Gk(z)) of block k, where

JISI(:) is defined in (6.133).

� Average block multichannel intersymbol interferenceJMC-ISI(Gk(z)) of
blockk, whereJMC-ISI(:) is defined in (6.134).

Alternative performance measures are the signal-to-interference ratio (SIR)
or the signal-to-interference-plus-noise ratio (SINR).

5.7 Simulations

In this section two simulation examples are given to illustrate the performance
behavior of some algorithms.

5.7.1 Multichannel system identification

The simulation setup is as follows:Ms = 4 source signals,M = 4 sensors,
the source signals are white Gaussian distributed with�s = 1, the sensor noise
is white Gaussian distributed with�n = 0:01. The elements of the unknown
mixing matrixA(z) are chosen randomly,aij(z) are causal filters withNa =

200. The estimation matrixH(z) has the same number of coefficients asA(z),
i.e.Nh = 200, where initially all elements are set to zero. This makes a total
of 4 � 4 � 201 � 3200 filter coefficientshij;n to adapt. We use the LMS1-Hx
algorithm given in Table E.6 with block lengthL = 1601 and FFT sizeC =

2048. The channel-wise performance curves are given in Fig. 5.1.JMSE-s(k) is
evaluated withWk(z)=P�Nw;Nw

�
H�1
k (z)

�

with Nw=200.

5.7.2 Multichannel inverse modeling

The simulation setup is as follows:Ms = 4 source signals,M = 4 sensors,
the source signals are white Gaussian distributed with�s = 1, the sensor noise
is white Gaussian distributed with�n =0:01. We take the same4 � 4 mixing
matrix withNa = 2 as in [70], which is ill conditioned and therefore difficult
to separate and deconvolve in the blind case. The non-causal separation matrix

W(z) hasNw = 300 and was initially set toW0(z) = I. This makes a total
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of 4 � 4 � 601 � 9600 filter coefficientswij;n to adapt. We use the LMS1-
Wx, RLS1-Wx, and RLS2-Ws algorithms given in Table E.10 withTx = 2000,

Tu = 1700, block lengthL = 3401 and FFT sizeC = 4096. The parameters
of the algorithms are

LMS1-Wx � = 0:0001

RLS1-Wx � = 0:9

RLS2-Ws � = 0:9
The channel-wise performance curves are given in Fig. 5.2 to 5.4.JMSE-x(k) is
evaluated withHk(z) =P�Nh;Nh

�
W�1
k (z)

�
andNh = 200. JICI andJISI are

defined in (6.132) and (6.133), respectively.

5.8 Summary

Once the algorithms for the instantaneous mixing case and the single-channel
convolutive case have been derived, the extension to the multichannel case is
straightforward with the rules given in Section 5.1. Since we have focused
on an implementation in the frequency domain, the algorithms are mainly of
interest if we have to adapt filters with many coefficients. For filters with only
a few coefficients, it might be worth remaining in the time domain to keep the
complexity low.

The adaptation of a SIMO filter withM output signals can be treated as
M SISO filters which share the same input signal. For an LMS algorithm, the

adaptation of an MISO filter withM input signals can be handled as if there are

M SISO filters which have the same desired output signal. The MIMO case is
more difficult than the SIMO and MISO case.

In the next chapter, we derive the blind counterparts of the algorithms de-
rived for single- and multichannel inverse modeling, which, in fact, perform the
same task, but without knowledge of the source signals.
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Figure 5.1: Channel-wise performance curves of LMS1-Hx in a multichannel
system identification setup: (top)JMSE-x(k), (bottom)JMSE-s(k).
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Figure 5.2: Channel-wise performance curves of LMS1-Wx in a multichannel

inverse modeling setup: (from top)JMSE-x(k), JMSE-s(k), JICI(k),
andJISI(k).
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Figure 5.3: Channel-wise performance curves of RLS1-Wx in a multichannel
inverse modeling setup: (from top)JMSE-x(k), JMSE-s(k), JICI(k),
andJISI(k).
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Figure 5.4: Channel-wise performance curves of RLS2-Ws in a multichannel

inverse modeling setup: (from top)JMSE-x(k), JMSE-s(k), JICI(k),
andJISI(k).



Chapter 6

Blind identification

In this chapter we develop blind algorithms to solve the blind source separa-
tion (BSS), blind deconvolution (BD) and multichannel blind deconvolution
(MCBD) problem, which are the blind counterparts of the inverse modeling
of an instantaneous-mixing system, single-channel convolutive-mixing system,
and multichannel convolutive-mixing system, respectively. We therefore make
the step from the non-blind algorithms given in Chapter 2, Chapter 4, and Chap-
ter 5 to their blind counterpart by replacing the non-blind error criterion by a
blind error criterion.

6.1 Central limit theorem

The central limit theorem(CLT) is one of the fundamental results important
for the understanding of the blind identification problem. Loosely speaking,
the CLT says that the pdf of a sufficiently large sum of independent random
numbers converges towards a Gaussian distribution, regardless of the pdf of the
individual random numbers. A precise definition of the central limit theorem is
given in [85].

Since we assume that the source signals are independent and identically
distributed (iid) random variables and mutually independent, the central limit
theorem has a direct consequence to a signal mixture or a convolution situa-
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separated sourcessources sensors

uxs A W

mixing process separation process

Figure 6.1: Mixing and separation.

tion. For the BSS problem it says that the pdf of the mixed signals (sensor
signals) are alwayscloserto a Gaussian distribution than the pdf of the individ-
ual source signals involved in the mixing process. The same is true for the BD
problem, where the pdf of the convolved signal (sensor signal) is always closer
to a Gaussian distribution than the pdf of the source signal. Of course the same
statement holds for the MCBD problem. In fact, this problem is the hardest
among the blind problems, because the output signals will always be very close
to a Gaussian pdf, due to the numerous terms inG(z)=W(z)A(z), unless the
convolutive separation matrixW(z) is really close to a true separation matrix,
e.g.A�1(z).

6.2 Assumptions in blind identification

For the BSS problem, if at most one source signal is Gaussian, then it is still
possible to separate all source signals. For the BD problem, the source signal
has to be non-Gaussian, otherwise no deconvolution is possible, only decorre-
lation. For the MCBD problem, all source signals have to be non-Gaussian, if
separation and deconvolution of the signal mixture is aimed for. In case one
source signal is Gaussian distributed, one can still separate all source signals,
however, the Gaussian source signal cannot be deconvolved, only decorrelated.
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6.3 Cost functions for blind identification

In a blind setup we have no access to the source signalss. This has the impor-
tant consequence that neither for system identification nor for inverse modeling
can we build the error signals required, i.e.ex andes. We have to find a new
blind error signal which is derived from the accessible signals of the system,
i.e.x andu. We briefly list some of the techniques used in blind identification.

6.3.1 Blind source separation

Entropy

One can show that a uniform pdf has the highestdifferential entropy, a defi-
nition of which can be found in (A.1), among all bounded pdfs (compact sup-
port). If pS(s) is known, one can find a nonlinear mappingy = g(s) such
thatpY (:) becomes a uniform distributionp1(:). The choice of the nonlinear-
ity g(:) depends onpS(s). However, in a blind setup, we do not know the
source signalssm, but if we knowpSm(sm), we can calculategm(:) and then
maximize the sum of the differential entropies ofym=gm(um), i.e. maximizeP

mH( pYm(gm(um)) ), under the constraint thatdetW 6= 0. This concept
was used in the derivation of theInfomaxalgorithm proposed by Bell and Se-
jnowski [7].

Mutual information

One possible blind error criterion is the mutual information of the output sig-
nals. Since the source signals are assumed to be mutually independent, we
want to steer the coefficients of the separation matrixW such that the output
signals become mutually independent again. We can measure the independence
of random variables by using the Kullback-Leibler divergence

JMI (pU (:)) = D
�
pU (u)k

Y
m

pUm(um)
�
� 0 . (6.1)

pUm(:) denotes the marginal probability density function ofUm. D (:k:) is
defined in (A.3). For perfect separation, the cost functionJMI becomes zero.
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Negentropy

Since the mixing process makes the sensor signals approach a Gaussian pdf,
we can steer the separation process such that the output signalsum are pushed
away from a Gaussian distribution. To this end we define an error criterion,
which measures the divergence of a pdf to the corresponding Gaussian distri-
bution with the same first and second-order statistics. Thenegentropyis such a
criterion and is defined as [40]

JNE(pU (:)) = D (pU (u)kpG(u)) � 0 (6.2)

wherepG(u) is the pdf of a multivariate Gaussian distribution with the same
covariance matrix aspU (u). Maximizing JNE corresponds to separating the
output signalsum.

Higher-order statistics

If X andY are two random variables [85], we say thatX andY areorthogonal
if

E fXY g = 0 (6.3)

andX andY areuncorrelatedif

E f(X �E fXg)(Y �E fY g)g = 0 (6.4)

which is equal to

E fXY g = E fXgE fY g . (6.5)

For zero-mean random variables, (6.3) and (6.4) are the same. IfX andY are
two random variables, we say thatX andY areindependentif

pXY (x; y) = pX(x) pY (y) . (6.6)

From (6.6) it follows that

E ff(X)g(Y )g = E ff(X)gE fg(Y )g (6.7)

E fXmY ng = E fXmgE fY ng 8m;n (6.8)

wheref(:) andg(:) are two arbitrary functions.
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If two random variables are independent, they are also uncorrelated. How-
ever, uncorrelatedness does not necessarily imply independence, except when

X andY are jointly Gaussian distributed. Because (6.5) is a necessary but not
sufficient condition for (6.7), second-order moments are not a sufficient statistic
for blind identification.

Kurtosis The kurtosisis a measure based on the fourth-order statistics of a
random variable. The kurtosis of a random variableX is defined as1

�(X) =

E
�
X4

	
E fX2g2 � 3 . (6.9)

Using (6.9), we have�2 � �(X) � 1 and a Gaussian random variableX

has�(X) = 0. [67]. Depending on the sign of the kurtosis, we distinguish
betweensuper-Gaussian(� > 0) and sub-Gaussian(� < 0) distributions.
Loosely speaking, a sub-Gaussian pdf looks more flat, e.g. uniform pdf, a super-
Gaussian pdf more peaky, e.g. Laplacian pdf. The source signals used in data
communications are usually sub-Gaussian, whereas in acoustics, e.g. speech,
the source signals are normally super-Gaussian.

If we know for instance that all kurtoses of the source signals have the
same sign, we can steer the blind algorithm such that the kurtoses of the output
signals are either maximized or minimized.

A nice overview of different techniques for blind source separation is given
in [72].

6.3.2 Blind deconvolution

Similar cost functions can be defined for blind deconvolution. Here we wish
to remove the dependence in time of the output samples. This means that we
wish to adapt the deconvolution or equalization filterw(z) such that the output
signal becomes white and non-Gaussian.

1Sometimes the�3 is omitted in the definition.
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Bussgang property

The Bussgang property is another criterion commonly used in blind algorithms.
A signalu is thereby passed through a nonlinearityy = g(u). The autocorrela-
tion of u must then be equal to the cross correlation betweenu andy. We say
that a time-seriesu(z) is Bussgangif E fg(ut)ut��g=E futut��g holds and

ut is independent identically distributed [71].

Memoryless estimator

Another concept is the one of a memoryless nonlinear estimator [8, 42]. Here
the output signalut is passed through a nonlinearityf(:) such thatf(ut) is
used as a nonlinear memoryless estimate ofst. It is called memoryless, as the
estimate does not use any time-delayed output values ofut. If computable, the
conditional mean estimator^st = f(ut) = E fStjUt=utg is a suitable choice.
Note, if pS(:) is a normal distribution, thenE fStjUt=utg=ut, i.e., the exact
shape of the nonlinear estimator degenerates to a linear estimator. Usually the
exact shape of the nonlinearityf(:) is not so crucial. Sometimes it is even
enough if the sign off(ut)� ut is correct most of the time. Initially, it may be
difficult to find a good estimator anyway.
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6.4 Blind error signal

We now wish to find an error signal which can be used in the blind case. The
non-blind error signal for inverse modeling isest= st � ut. In the blind case,
we do not have access to the time samplesst and therefore have to estimate
eitherst or est. A reasonable choice would be to use^st = ut, as we have in
fact st = ut at convergence in the noise-free case. However, the error signal

^est = ^st � ut would be zero all the time, which is of no help. Thus, if we
have only the output signalut and the input signalxt available for building an
error signal, we have to introduce a nonlinearity. We follow the concept of a
channel-wise memoryless estimator.

Conditional-mean estimator We consider the multichannel convolutive-
mixing case. We apply a channel-wisenonlinear memoryless estimatorsuch
that^sm;t = fm(um;t). The error signal^esm;t=^sm;t � um;t then becomes

^esm;t = fm(um;t)� um;t . (6.10)

A reasonable estimator is given by the channel-wise evaluation of thecondi-
tional mean

^sm;t = E fSmjUm=um;tg (6.11)
=

Z
sm;t � pSmjUm(sm;tjum;t) dsm;t (6.12)

=
Z

sm;t �
pUmjSm(um;tjsm;t) � pSm(sm;t)

pUm(um;t)

dsm;t . (6.13)

In this derivation we used Bayes’ theorem. Near convergence, we can approxi-
matepUmjSm(um;tjsm;t) by pNm

(um;t � sm;t), wherepNm

(:) is a Gaussian
distribution with variance��n

2
m, which models the multichannel convolutive

noise [9], stemming from the interchannel and intersymbol interference due
to the equalization mismatch[I�W(z)A(z)]. We assume a sensor-noise-free
model. We then have

^sm;t = E fSmjum;tg (6.14)

=
Z

sm;t � pNm

(um;t � sm;t) � pSm(sm;t)

pUm(um;t)

dsm;t . (6.15)

However, this integral is not easy to solve analytically. Furthermore, we need
an estimate of��n

2
m, the variance ofpNm

(:). Near convergence,��n

2
m will tend
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towards zero. Note, that for a perfect separation and deconvolutionpUm(:) =

pSm(:) andpNm

(:)=Æ(:). Eq. (6.14) then becomes^sm;t=um;t, which concurs
with our intuition.

An alternative blind error signal can be defined as

^esm;t = sm;t � ^um;t (6.16)

= sm;t � g(sm;t) . (6.17)

In fact, this error signal models the situation whereum;t is unknown butsm;t

is known. In this case we can use^um;t=g(sm;t)=E fUmjSm=sm;tg.
Near convergence, where we havesm;t � um;t, we can find a relationship

betweenf(:) andg(:). To this end, we replacesm;t by um;t in (6.17) and set
equal the two error signals^est from (6.10) and (6.17). We then end up with

f(um;t)� um;t = um;t � g(um;t) (6.18)

which can be written as

f(um;t) = 2um;t � g(um;t) (6.19)

g(um;t) = 2um;t � f(um;t) (6.20)

or

f(um;t) + g(um;t)

2

= um;t . (6.21)

Eq. (6.21) has the interpretation that iff(um;t) > um;t theng(um;t) < um;t.

Score function Thescore functionof a probability-density functionpS(:) is
defined as

'S(s) = �@ log pS(s)

@s

=
�p0S(s)

pS(s)

. (6.22)

The score function typically appears in the update equations of many known
gradient-based algorithms for blind identification if a maximum-likelihood cost
function is used .
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6.5 Transforming a non-blind into a blind algo-
rithm

6.5.1 BRLS1

We use the RLS1-Wx as an example to show the steps for the transformation
of a non-blind algorithm into a blind one. We assume the instantaneous mixing
case. The RLS1-Wx with exponential forgetting is defined in Section 2.4.4
from (2.50) to (2.53), see also Table E.7. We make the usual assumption that
the source signals are temporally white and mutually independent. Therefore

Rss is a diagonal matrix and if unknown, we substituteRss = I. Thus, there
is no need to update^R�1

sst

with (2.52) and (2.53). Under these assumptions, the
RLS1-Wx simplifies to

�t =

1� �

�+ (1� �) sHt ut

(6.23)

Wt+1 =Wt + �t (st � ut) sHt Wt . (6.24)

For the algorithm to work blindly, we somehow have to get rid ofst, as the
source signals are not accessible.

We start with (6.23) which is, in fact, just a self-adjusting step-size con-
trol, with forgetting factor� as a parameter. In fact,�t is not involved in the
separation process, it merely controls the adaptation rate. Therefore we can
replacest by ut, asut is certainly a reasonable estimate ofst near conver-
gence. Moreover, in doing so, we can keep the step size�t real valued, even
thoughut might be complex. Otherwise�t might introduce an unwanted com-
plex rotation in (6.24). Keeping the step size real valued is especially useful in
the convolutive case, because�t becomes dependent on the frequency. In fact,

�t(!) corresponds to a bin-wise step-size normalization, a well-known tech-
nique from adaptive filtering in the frequency domain to accelerate the conver-
gence rate for non-white input signals [77]. A complex valued�t(!) would
introduce an additional phase shift into the update equation. However, once
the output signals are temporally white,uHt (z)ut(z), and hence�t(!) = �t,
become frequency independent.

We can rewrite the update equation (6.24) as

Wt+1 =Wt + �t
�
sts
H
t � utsHt

�
Wt . (6.25)
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We now have several choices for replacing eachst in (6.25) by either a linear
estimate^st = ut or a nonlinear estimate^st = f(ut). At least onest has to
be replaced by a nonlinear estimate, otherwise the term in the bracket will be
zero all time. In the derivation of stochastic-gradient-based algorithms, e.g.,
the LMS algorithm, a correlation matrix is sometimes replaced by an instan-
taneous estimate for two reasons. The first is because the correlation matrices
are not known a priori and have to be estimated anyway, and the second is that
a multiplication with an outer product (matrix with rank one) requires fewer
element-wise multiplications than with a regular matrix. However, in our case
it is just the other way round. We have an outer productsts

H
t from which we

know the expectationE
�
sts
H
t

	
=Rss = I. Thus, we have another possibility

to transform (6.24) into a blind algorithm, namely

Wt+1 =Wt + �t
�
I� ut fH(ut)

�
Wt . (6.26)

If we now apply thetranspose property[2, 109], which is based on a stability
analysis of blind algorithms, we can replaceut fH(ut) by g(ut)uHt where
the nonlinearitiesgm(:) have different characteristics than thefm(:). Loosely
speaking, iffm(:) is a nonlinearity which can separate a sub-Gaussian signal,
thengm(:) has to be a nonlinearity which can separate a super-Gaussian signal.
In doing so, we end up with

�t =

1� �

�+ (1� �)uHt ut

(6.27)

Wt+1 =Wt + �t
�
I� g(ut)uHt

�
Wt . (6.28)

We refer to (6.27) and (6.28) as BRLS1, wheregm(:) is usually chosen as the
score function'Sm(:) defined in (6.22).

Surprisingly, the update equation (6.28) without (6.27) is the well-known
natural-gradient learning algorithmproposed by Amariet al.,which is one of
the most powerful algorithms known for blind source separation. Note, that
(6.27) and (6.28) were derived here in a completely different manner than the
one shown in [4].

The following comments can be made:

� The natural-gradient learning algorithm has the so-calledequivariant
property, which says that in the noiseless case the convergence behav-
ior depends on the current global systemGt =WtA and not only on

A.
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� In fact, the RLS1-Wx is derived from the RLS1-Hx, which is an algo-
rithm for system identification and therefore adaptsH = W�1 which
is an estimate ofA. In the system identification problem, the conver-
gence rate is independent of the mixing matrixA or A(z), as long as
the source signalssm are white and mutually uncorrelated. Hence, from
Chapter 2 we know that RLS1-Wx has a fast convergence behavior which
is robust against the conditioning of the mixing matrixA. As we merely
exchanged a non-blind error criterion with a blind one in the derivation of
the BRLS1, but not the part which controls the direction of the gradient,
it is not very surprisingly that (6.28), and therefore the natural-gradient
learning algorithm, reveals the equivariant property.

� The RLS1-Wx as well as the blind counterpart BRLS1 belong to the class
of so-calledserial-update algorithms[17], as we can reformulate (6.28)
recursively as

Wt+1 = 4Wt �Wt =
�Yt

�=0
4W�

�
�W0 (6.29)

with 4Wt = I + �t
�
I� g(ut)uHt

�

. From Chapter 2 and Table E.7
we see that this is not a property of blind algorithms alone. In fact, all
algorithms for inverse modeling in Table E.7, which have their roots in
system identification, see Table E.3, belong to the class of serial-update
algorithms, and vice versa. They are originally designed to adapt an
estimateH = ^A and from applying the matrix-inversion lemma, they
become serial-update algorithms which adaptW = ^A�1. Recall from
the simulation examples in Section 2.10, that the serial update algorithms
for system identification showed slower convergence rates than the non-
serial ones.

6.5.2 General rules for transforming a non-blind algorithm
into a blind one

Nonlinearity To obtain not only mutually uncorrelated but mutually inde-
pendent output signals, we have to introduce at least one nonlinearity into the
update equation. The same is true for blind deconvolution to achieve not only
temporally uncorrelated but temporally independent output signals.

If f(:) andg(:) are two nonlinearities, we denote the output of the nonlin-
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earity as

yt , f(ut) or yt , g(ut) . (6.30)

The corresponding time-series in thez-domain is

y(z) ,

TuX
t=�Tu

ytz
�t . (6.31)

We prefer to writey(z) =
P
g(ut)z
�t thang(u(z)), because the latter denotes

a nonlinearity applied to a polynomial. The same is true for the frequency
domain, we prefery(!) thang(u(!)), as we apply the nonlinearity in the time
domain and not in the frequency domain.

In the multichannel case, we define the output of the multichannel nonlin-
earity as

yt , f(ut) or yt , g(ut) (6.32)

ym;t , fm(um;t) or ym;t , fm(um;t) . (6.33)

The corresponding time-series in thez-domain is

y(z) ,

TuX
t=�Tu

ytz
�t . (6.34)

Transformation As we have seen in Section 6.5.1, there is no unique trans-
formation of a nonblind algorithm into a blind one. In Table 6.1 we list some
possible replacements. However, there are often several possibilities and to see
which one has the best performance, one has to carry out some simulations or
try to analyze the stability conditions [2]. Note, that at least one nonlinearity
must appear in a blind update equation, otherwise the output signals will only
be uncorrelated, but not independent. Thetranspose property[109] is also a
very useful tool to find a dual update equation. Finally, there is no guaranty
that an algorithm is stable and converges towards a global minimum.

Transforming an algorithm for multichannel inverse modeling to a multi-
channel blind-deconvolution algorithm is straightforward. The update equa-
tions for BSS, BD, and MCBD are given in Table E.11, Table E.13, and Ta-
ble E.14; they are the blind counterparts of those given in Table E.7, Table E.9,
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non-blind blind I blind II

es = s� u eb = y � u eb = u� y

y f(u) g(u)

s y u

u u y

Rss Ryy I

Ruu Ruu I

Rsu Ryu Ruy

Rus Ruy Ryu

Rxx W�1RuuW

�H or W�1W�H

Rux RuuW

�H or W�H

Rxu W�1Ruu or W�1

Table 6.1: Mapping of variables to transform an algorithm for inverse modeling into a blind
algorithm.

and Table E.10, respectively. Note, since the cost functions, and also the update
equations are originally formulated in the time domain, these algorithms do not
have a so-calledpermutation problem, which typically appears when the cost
function is formulated solely in the frequency domain in a bin-wise manner.
These algorithms presented here carry out the update in the frequency domain
only for efficiency reasons.
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6.6 Orthogonality principle and Bussgang prop-
erty

In Section 5.5.2 we have derived the optimal infinite-length Wiener filter with
the help of the orthogonality principleResx(z) = 0 [85]. If we replace the
error signales by a blind error signalebt = f(ut) � ut or ebt = ut � g(ut),
and require again that the error-signal vector must be uncorrelated to the input-
signal vector, the orthogonality principle becomes

Rebx(z) = 0 . (6.35)

For an infinite-length filterW(z) =
P1

n=�1Wnz
�n andebt = yt � ut we

have

Rebx(z) = Ryx(z)�Rux(z) = 0 (6.36)

or

Ryx(z) = Rux(z) . (6.37)

Postmultiplying both sides of (6.37) byWH(z) gives

Ryu(z) = Ruu(z) (6.38)

which is known as theBussgang property[9]. Evaluating (6.38) for every
power ofz yields

Ryu� = Ruu� (6.39)

E
�
yt+�u
H
t

	
= E

�
ut+�u
H
t

	

. (6.40)

From (6.37) and (6.38) it follows that

Ryx(z) =W(z)Rxx(z) . (6.41)

In contrast to (5.108), (6.41) cannot be solved directly forW(z) becausey(z)

depends onW(z) in a nonlinear fashion.

The Bussgang property can be used to build a blind cost function

JB =


Ruu(z)�Ryu(z)

F (6.42)

with the appropriate choice of the nonlinearity. A modified version of (6.42) is
used in the natural-gradient learning algorithm, whereRuu(z) is replaced by
its expectation at convergenceRss=I.
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6.7 Blind source separation (BSS)

Algorithm Update equations

Infomax [7] Wt+1 =Wt + �
�
W�H
t � ytxHt

�
Natural gradient [4] Wt+1 =Wt + �

�
I� ytuHt

�
Wt

EASI [17] Wt+1 =Wt + �
�
I� utuHt + uty
H
t � ytuHt

�
Wt

Table 6.2: Update equations for blind source separation.

This section is the “blind” counterpart of inverse modeling of an instantaneous-
mixing system, decribed in Section 2.5.

The update equations are given in Table 6.2 and Table E.11.

6.8 Blind deconvolution (BD)

xts t ut

nt

yt

a(z)

g(:)

wt(z)

Figure 6.2: Single-channel blind deconvolution. The filterw(z) is adapted
such thatg(z) = w(z)a(z) � z�d. The delayd depends partially
on the initial valuew0(z).

This section is the “blind” counterpart of the single-channel inverse mod-
eling problem decribed in Section 2.5. Blind deconvolution is also known as
blind equalization, which is more common in data communications.
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Batch learning algorithm for blind deconvolution

Definitions and initialization(k = 0):

C � 2Tx + 1 � 2(Tu +Nw) + 1 (6.43)

L = 2Tu + 1 (6.44)

~x = (x0; : : : ; xTx ; 0; : : : ; 0; x�Tx ; : : : ; x�1)
T (6.45)

�X = diag (F~x) (6.46)

~w0 = (w0; : : : ; wNw ; 0; : : : ; 0; w�Nw ; : : : ; w�1)
T (6.47)

�W0 = diag (F ~w0) (6.48)

P�w = F ~P�Nw;Nw F
�1 (6.49)

For every iterationk = 1; 2; 3; : : ::

1. Filtering:

�Uk = �Wk
�X (6.50)

~uk = ~P�Tu;Tu F
�1 diag
�
�Uk
�

(6.51)

= (u0; : : : ; uTu; 0; : : : ; 0; u�Tu; : : : ; u�1)
T (6.52)

2. Adaptation error:

~yk = g (~uk) (6.53)

= (y0; : : : ; yTu; 0; : : : ; 0; y�Tu; : : : ; y�1)
T (6.54)

�Yk = diag (F~yk) (6.55)

~ebk
= ~uk � ~yk (6.56)

�Ebk
= diag

�
F~ebk

�

(6.57)

3. Update equations:

�W0
k+1 = any update equation from Table 6.3 or Table E.13 (6.58)

�Wk+1 = diag
�
P�w diag

�
�W0
k+1

��

(6.59)
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Block-wise learning algorithm for blind deconvolution

Definitions and initialization(k = 0):

C � 2Tx + 1 � 2(Tu +Nw) + 1 (6.60)

L = 2Tu + 1 (6.61)

~w0 = (w0; : : : ; wNw ; 0; : : : ; 0; w�Nw ; : : : ; w�1)
T (6.62)

�W0 = diag (F ~w0) (6.63)

P�w = F ~P�Nw;Nw F
�1 (6.64)

For every blockk = 1; 2; 3; : : ::

1. Filtering:

~xk = (xkL; : : : ; xkL+Tx ; 0; : : : ; 0; xkL�Tx ; : : : ; xkL�1)
T (6.65)

�Xk = diag (F~xk) (6.66)

�Uk = �Wk
�Xk (6.67)

~uk = ~P�Tu;Tu F
�1 diag
�
�Uk
�

(6.68)
= (ukL; : : : ; ukL+Tu; 0; : : : ; 0; ukL�Tu; : : : ; ukL�1)

T (6.69)

2. Adaptation error:

~yk = g (~uk) (6.70)

= (ykL; : : : ; ykL+Tu; 0; : : : ; 0; ykL�Tu; : : : ; ykL�1)
T (6.71)

�Yk = diag (F~yk) (6.72)

~ebk
= ~uk � ~yk (6.73)

�Ebk
= diag

�
F~ebk

�

(6.74)

3. Update equations:

�W0
k+1 = any update equation from Table 6.3 or Table E.13 (6.75)

�Wk+1 = diag
�
P�w diag

�
�W0
k+1

��

(6.76)
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Algorithm Update equations

Infomax �Wk+1 = �Wk + �
�
�W�H
k � �Yk
�XH
k

�

Natural gradient �Wk+1 = �Wk + �
�
I� �Yk
�UH
k

�
�Wk

EASI �Wk+1 = �Wk + �
�
I� �Uk
�UH
k + �Uk
�YH
k � �Yk
�UH
k

�
�Wk

Table 6.3: Update equations for single-channel blind deconvolution.

6.8.1 Batch learning algorithm for blind deconvolution

This section is the “blind” counterpart to Section 4.4.2 and Section 4.5.2.

The whole batch learning algorithm for single-channel blind deconvolution
is given on page 168 from (6.43) to (6.59). Since we have all data available, we
adapt a non-causal filter.

The following comments can be made:

� The update equations are given in Table 6.3 and Table E.13.

6.8.2 Block-wise learning algorithm for blind deconvolution

This section is the “blind” counterpart to Section 4.4.3 and Section 4.5.3.

The whole block-wise learning algorithm for single-channel blind decon-
volution is given on page 169 from (6.60) to (6.76). The update equations are
given in Table 6.3 and Table E.13. We adapt a delayed non-causal filter, the ori-
gin is shifted by a delay, to cope with a nonminimum-phase systema(z). The
comments in Section 6.8.1 hold also for the block-wise learning algorithm. A
MATLAB implementation of the algorithm is given in Appendix F. An alter-
native frequency-domain based blind deconvolution algorithm is presented by
Douglas and Kung in [35].
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Algorithm Update equations

Infomax Wk+1 =Wk + �
�
W

�H
k �YkX

H
k

�
Natural gradient Wk+1 =Wk + �

�
I�YkU

H
k

�
Wk

EASI Wk+1 =Wk + �
�
I�UkU

H
k +UkY

H
k �YkU

H
k

�
Wk

Table 6.4: Update equations for multichannel blind deconvolution.

6.9 Multichannel blind deconvolution (MCBD)

This section is the “blind” counterpart of the multichannel inverse modeling
problem decribed in Section 5.4.

6.9.1 Batch learning algorithm for multichannel blind de-
convolution

This section is the “blind” counterpart to Section 5.4.1.

The whole batch learning algorithm for multichannel blind deconvolution
is given on page 172 from (6.77) to (6.93). The update equations are given
in Table 6.4 and Table E.14. Since we have all data available, we can adapt a
non-causal filter.

6.9.2 Block-wise learning algorithm for multichannel blind
deconvolution

This section is the “blind” counterpart to Section 5.4.2.

The whole block-wise learning algorithm for multichannel blind deconvo-
lution is given on page 173 from (6.94) to (6.110). The update equations are
given in Table 6.4 and Table E.14. We adapt a delayed non-causal filter, the
origin is shifted by a delay, to cope with a nonminimum-phase systema(z).
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Batch learning algorithm for multichannel blind deconvolution

Definitions and initialization(k = 0):

C � 2Tx + 1 � 2 (Tu +Nw) + 1 (6.77)

L = 2Tu + 1 (6.78)

~xm = (xm;0; : : : ; xm;Tx ; 0; : : : ; 0; xm;�Tx ; : : : ; xm;�1)
T (6.79)

X =
�
�Xm
�
= [diag (F~xm)] (6.80)

~wij;0 = (wij;0; : : : ; wij;Nw ; 0; : : : ; 0; wij;�Nw ; : : : ; wij;�1)
T (6.81)

W0 =
�
�Wij;0
�
= [diag (F ~wij;0)] (6.82)

P�w = F ~P�Nw;Nw F
�1 (6.83)

For every iterationk = 1; 2; 3; : : ::

1. Filtering:

Uk =WkX (6.84)

~um;k = ~P�Tu;Tu F
�1 diag
�
�Um;k
�

(6.85)

= (um;0; : : : ; um;Tu; 0; : : : ; 0; um;�Tu; : : : ; um;�1)
T (6.86)

2. Adaptation error:

~ym;k = gm (~um;k) (6.87)

= (ym;0; : : : ; ym;Tu; 0; : : : ; 0; ym;�Tu; : : : ; ym;�1)
T (6.88)

Yk =
�
�Ym;k
�
= [diag (F~ym;k)] (6.89)

~ebm;k
= ~um;k � ~ym;k (6.90)

Ebk =
h
�Ebm;k

i
=

h
diag

�
F~ebm;k

�i

(6.91)

3. Update equations:

W

0
k+1 = any update equation from Table 6.4 or Table E.14 (6.92)

�Wij;k+1 = diag
�
P�w diag

�
�W0
ij;k+1

��

(6.93)
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Block-wise learning algorithm for multichannel blind deconvolution

Definitions and initialization(k = 0):

C � 2Tx + 1 � 2 (Tu +Nw) + 1 (6.94)

L = 2Tu + 1 (6.95)

~wij;0 = (wij;0; : : : ; wij;Nw ; 0; : : : ; 0; wij;�Nw ; : : : ; wij;�1)
T (6.96)

W0 =
�
�Wij;0
�
= [diag (F ~wij;0)] (6.97)

P�w = F ~P�Nw;Nw F
�1 (6.98)

For every blockk = 1; 2; 3; : : ::

1. Filtering:

~xm;k = (xm;kL; : : : ; xm;kL+Tx ; 0; : : : ; 0; xm;kL�Tx ; : : : ; xm;kL�1)
T

(6.99)

Xk =
�
�Xm;k
�
= [diag (F~xm;k)] (6.100)

Uk =WkXk (6.101)

~um;k = ~P�Tu;Tu F
�1 diag
�
�Um;k
�

(6.102)
= (um;kL; : : : ; um;kL+Tu; 0; : : : ; 0; um;kL�Tu; : : : ; um;kL�1)

T

(6.103)
2. Adaptation error:

~ym;k = gm (~um;k) (6.104)

= (ym;kL; : : : ; ym;kL+Tu; 0; : : : ; 0; ym;kL�Tu; : : : ; ym;kL�1)
T

(6.105)

Yk =
�
�Ym;k
�
= [diag (F~ym;k)] (6.106)

~ebm;k
= ~sm;k � ~um;k (6.107)

Ebk
=

h
�Ebm;k

i
=

h
diag

�
F~ebm;k

�i

(6.108)

3. Update equations:

W

0
k+1 = any update equation from Table 6.4 or Table E.14 (6.109)

�Wij;k+1 = diag
�
P�w diag

�
�W0
ij;k+1

��

(6.110)
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6.10 Blind decorrelation

In case we only wish to achieve decorrelated but not necessarily independent
output signals, e.g., prewhitening of the input signals, we replace the nonlinear-
ity g(:) by a simple linearity. As a consequence we then haveym;t=um;t. This
substitution can be applied for all aforementioned blind algorithms: BSS, BD,
and MCBD. Hence, we obtain either spatially uncorrelated output signals, and /
or temporally uncorrelated output signals. For a detailed analysis of algorithms
for blind decorrelation see [31].

6.11 Automatic gain control

The simplest blind algorithm is an automatic gain control, see also Fig. 1.5. If
we deal with real valued signals and gains only, there is no need to use a non-
linearity for an AGC. Second-order statistics are sufficient here. However, in
a complex-valued system, e.g., in the baseband representation of a communi-
cation system, the use of a nonlinearity can help not only to adjust the gain of
the output signal, but also to control the phase of the output signal [8,78]. The
nonlinearity is split into a function of the real and imaginary part, and not only
of the absolute value ofut. The real and imaginary parts of the output signal
can then be forced to be as independent as they can possibly get, resulting in
the original constellation up to a rotation of a multiple of�=2. Algorithms for
an AGC with phase control are given in Table 6.5 and Table E.12.

Algorithm Update equations

Infomax wt+1 = wt + �
�
w��t � ytx
�
t

�

Natural gradient wt+1 = wt + � (1� ytu
�
t )wt

EASI wt+1 = wt + � (1� utu
�
t + uty

�
t � ytu

�
t )wt

Table 6.5: Update equations for AGC.
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6.12 Decomposition of the global system

6.12.1 BSS: Decomposition of the global-system matrixG

We now wish to analyze the behavior of the interchannel interference of the
global system. To this end, we decompose the global-system matrixG =WA

in different ways

G =Go + ~G (6.111)

=WoA+ (W �Wo)A =WoA+ ~WA = (Wo + ~W)A (6.112)

= PD+ ~PD = (P+ ~P)D (6.113)

= PD+P~ED = P(I + ~E)D = PED (6.114)

where ~W =W �Wo, Wo is a perfect separation matrix,P a permutation
matrix,D a complex-valued diagonal matrix,E a matrix with unity in the main
diagonal, and~E = E� I a matrix with zeros in the main diagonal. The source
signals propagate viaG to the outputu, whereGo and ~G describe the desired
propagation and the interchannel interference, respectively. SinceGo =PD,

Go has to have full rankMs and only one non-zero element per row and col-
umn. Furthermore, we constrain theMs non-zero entries ofGo to coincide
with those ofG with the same index. Hence,Go =

�
go

ij
�

and ~G = [~gij ] can be
written as

go

ij =
(
gij , j = � (i)

0 , otherwise
(6.115)

and

~gij =
(

0 , j = � (i)

gij , otherwise
(6.116)

where the permutation� (i) of the setM = f1; : : : ;Msg is a one-to-one map-
ping ofM onto itself [25].

Since we wish to minimize the interchannel interference at the outputu, the

Ms non-zero entries inGo are chosen such as to minimizek ~GkF for a given

G. Alternatively, the problem of findingGo which minimizesk ~GkF can be
reformulated as finding a permutation� (i) out of theMs! possible ones, which
minimizesk ~GkF , i.e., if G happens to be diagonal dominant, thenGo is a
diagonal matrix containing the main diagonal ofG as its own main diagonal,
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i.e.� (i) = i. Furthermore, from (6.111) and (6.115) we have

k ~Gk2F = kG�Gok2F (6.117)

=

X
i;j

i 6=�(i)
jgij j2 =

X
i;j

jgij j2 �
X

i

jgi;�(i)j2

= kGk2F � kGok2F . (6.118)

This means that finding a permutation� (i) that minimizesk ~GkF is equiva-
lent to finding a permutation� (i) which maximizeskGokF under the given
constraints (6.115) on the choice ofGo. OnceGo and ~G are determined, the
factorization in (6.114),Go=PD, is easily evaluated and~E=PT ~GD�1.

In the case of perfect separation,~G vanishes and thereforeG=Go=PD=

WoA. The optimal solution for the separation matrix is then

Wo = PDA�1 , (6.119)

a row-wise scaled and permuted version of the inverse system. Since we are
interested in waveform-preserving estimates of the source signals, scaling and
permutation of the output signals does not affect an optimal solution with~G=

0. In the communications literature, such a solution would be described as zero-
forcing [51]. A zero-forcingalgorithm tries to force all elements of~G to zero
and therefore focuses on perfect separation rather than high outputsignal-to-
interference-plus-noise ratio(SINR). The terminology of zero-forcing is more
common in the field of blind deconvolution for the case where one merely wants
to minimize intersymbol interference, regardless of any additive noise.

6.12.2 BD: Decomposition of the global-system filterg(z)

In a similar way to the decomposition ofG in Section 6.12.1, we can decom-
pose the global-system matrixg(z) = w(z)a(z) in different ways

g(z) = go(z) + ~g(z) (6.120)

= wo(z)a(z) + (w(z)� wo(z))a(z) (6.121)

= wo(z)a(z) + ~w(z)a(z) = (wo(z) + ~w(z))a(z) (6.122)

= d(z) + ~p(z) d(z) = (1 + ~p(z)) d(z) (6.123)

= d(z) + ~e(z)d(z) = (1 + ~e(z))d(z) = e(z)d(z) (6.124)
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wherego(z)= d(z)= d0z�� consists of a single term. Note that in the single-
channel case, we have no permutation indetermination of the output signals.

6.12.3 MCBD: Decomposition of the global-system matrix

G(z)

In a similar way to the decomposition ofG in Section 6.12.1, we can decom-
pose the global-system matrixG(z) =W(z)A(z) in different ways

G(z) = Go(z) + ~G(z) (6.125)

=Wo(z)A(z) + (W(z)�Wo(z))A(z) (6.126)

=Wo(z)A(z) + ~W(z)A(z) = (Wo(z) + ~W(z))A(z) (6.127)

= PD(z) + ~P(z)D(z) = (P+ ~P(z))D(z) (6.128)

= PD(z) +P~E(z)D(z) = P(I+ ~E(z))D(z) = PE(z)D(z) .
(6.129)

P is again a permutation matrix andD(z) = diag
�
d01z
��1 ; : : : ; d0Ms

z��Ms

�

.
Furthermore,Go(z) has full rank and only one term per non-zero element.

6.13 Performance measures for blind identification

With the use of blind signal processing algorithms, we are more interested in
wave-form preserving estimates of the signals, than in their exact amplitude or
phase. We will therefore measure the performance of a blind algorithm on the
residualinterchannel interference(ICI) or the intersymbol interference(ISI).
Alternatively, we could also use thesignal-to-interference ratio(SIR), or in the
noisy case thesignal-to-interference-plus-noise ratio(SINR).

6.13.1 Blind source separation

Ideally, the global system matrixG=WA in (6.111) would have one non-zero
entry in each rowi. jgij j2 is the power transfer from sourcej to the outputi.
In each rowi there will be one dominant entry, wheremaxj jgij j2 indicates the
power transfer of the separated sourcej.
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The other entries of the same rowi of G, which end up being non-zero
in a realistic case, if squared and summed, reveal the power of other sources
leaking through to the specific outputi, if all sources have equal power and are
mutually uncorrelated. Vice versa, by squaring the subdominant entries of the
same column ofG, we get the power of one source leaking through to differ-
ent outputs. Provided the same-source lock-on effect is not a problem for the
algorithm under consideration [70], the row-wise observation of the permuta-
tion matrix is more meaningful than the column-wise observation, rendering
the performance index into a measure ofinterchannel interference(ICI) [59]

JICI(G) =

1
M

MX
i=1

MX
j=1

jgij j2 �max
j

jgij j2

max
j

jgij j2

. (6.130)

Of course,JICI(G) is available in a simulation environment only. In practical
situations, the true matrixA and therefore the matrixG are unknown.

6.13.2 Single-channel blind deconvolution

In the BD case, the performance measure should reflect the deconvolution ca-
pability, hence indicating to what extent the deconvolved signal is influenced by
adjacent samples of the same signal (convolutive noise). Recall that the global
system response is defined asg(z) = w(z)a(z) =

P1
n=�1 gnz

�n. Similarly
to (6.130), theintersymbol interference(ISI) can be defined as

JISI (g(z)) =

1X
n=�1

jgnj2 �max
n

jgnj2

max
n

jgnj2

=

1X
n=�1

jgnj2

max
n

jgnj2
� 1 . (6.131)

For finite impulse responses, the infinite sums in (6.131) are reduced to finite
sums.

6.13.3 Multichannel blind deconvolution

For the more general MCBD case, we are interested in both measures (6.130)
and (6.131). We denoteG(z) as the matrix of filter polynomials inz of the
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global system response with entries[G(z)]ij = gij(z) =
P1

n=�1 gij;nz
�n

being the global filter response between sourcej and outputi. Then we can
find the averaged ICI as

JICI(G(z)) =

1
M

MX
i=1

MX
j=1

1X
n=�1

jgij;nj2

max
j

1X
n=�1

jgij;nj2
� 1 . (6.132)

JICI is also a meaningful measure for algorithms which only separate the source
signals but do not attempt to deconvolve them.
For the calculation of the averaged ISI, each row of the permutation matrix is
searched for the entry containing the filter with the most energy. By calculating
the ISI of these entries and averaging over all rows, we get

JISI(G(z)) =

1
M

MX
i=1

1X
n=�1

jgi;(argmaxj
P
n jgij;nj

2); nj2

max
n

jgi;(argmaxj
P
n jgij;nj

2); nj2
� 1: (6.133)

An alternative measure reflecting both averaged ISI and ICI was defined in [70]

JMC-ISI(G(z)) =

1
M

MX
i=1

MX
j=1

1X
n=�1

jgij;nj2

max
j; n

jgij;nj2
� 1: (6.134)

If (6.132) and (6.133) are only calculated row-wise, rather than averaged over
all rows, a simple relationship between them and (6.134) can be found

JMC-ISI row�i = JICI row�i + JISI row�i + JICI row�i � JISI row�i . (6.135)

If JICI row�i andJISI row�i are small values (good separation and deconvolu-
tion), JMC-ISI row�i is roughly equal to the sum of these two measures. The
corresponding results are obtained for a column-wise analysis.
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6.14 Simulations

6.14.1 Blind source separation

The simulation setup is as follows: The mixing matrix has the condition num-
ber� (A) = 10 and logarithmically distributed singular values. TheMs = 10

source signals are Laplacian distributed with unity power. Sensor noise has

�n = 0:01 which equals�40 dB SNR. We used a block-wise update with
block lengthL = 100. For the comparison we used the natural gradient, the
BLMS2b, and the Infomax learning algorithm. The step sizes� were 0.3, 0.3,
and 0.7, respectively, and are chosen to achieve the fastest convergence be-
havior, without becoming unstable. The performance curves are shown in Ta-
ble 6.3. Among the three algorithms, the Infomax algorithm has the slowest
convergence rate. However, it is well known, that the Infomax has its best
performance for unitary mixing matrices, i.e.� (A) = 0.
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Figure 6.3: Performance curves of blind source separation: (from top) natural
gradient, BLMS2b, and Infomax.
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6.14.2 Blind deconvolution

The unknown system is the same as for the system identification example in
Section 4.8.1 withka(z)kF = 1. The simulation parameters are: The source
signal is Laplacian distributed with�s = 1, the sensor noise is white Gaussian
distributed with�n=0:01 (�40 dB SNR). The non-causal deconvolution filter

w(z) hasNw = 300, where the filter coefficients were initialized using a center-
spike strategy, i.e.w0(z)=1. Further parameters are:Tx = 1000, Nw = 300,

Tu = Tx � Nw = 700, block sizeL = 2Tu + 1 = 1401, and the FFT size

C = 2048. The Bussgang nonlinearity isg(ut) =
p
2 sign(ut). We use no

prewhitening of the input signalx(z).

The parameters of the algorithms are

BLMS1c � = 0:1

BLMS2a � = 0:1

BLMS2b � = 0:1

BLMS3 � = 0:1 almost no convergence
BLMS4 � = 0:03 almost no convergence (Infomax)
BRLS2 � = 0:8

BRLS1a � = 0:8

BRLS1b � = 0:8

BRLS1c � = 0:8

Nat. grad. � = 0:05

EASI � = 0:05

The performance curves ofJISI are shown in Fig. 6.4 to 6.6.
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Figure 6.4: Performance curves of blind deconvolution: (from top) BLMS1c,
BLMS2a, and BLMS2b.
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Figure 6.5: Performance curves of blind deconvolution: (from top) BRLS1a,
BRLS1b, and BRLS2.
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Figure 6.6: Performance curves of blind deconvolution: (top) Natural gradient,
(bottom) EASI algorithm.
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6.14.3 Multichannel blind deconvolution
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Figure 6.7: Channel-wise performance curves of BRLS2 in a multichannel
blind deconvolution setup: (top)JICI(k), (bottom)JISI(k).

We use the same unknown convolutive mixing matrix as for the multichan-
nel inverse modeling in Section 5.7.2. The simulation parameters are:Ms = 4

source signals which are Gamma distributed with�s = 1, M = 4 sensors with
additive white Gaussian sensornoise with�n=0:01, The non-causal separation
matrixW(z) hasNw = 100 and was initially set toW0(z) = I +W0

0(z),
where the coefficients ofW0(z) are small random numbers. This makes a
total of 4 � 4 � 201 � 3200 filter coefficientswij;n to adapt. We use the
BRLS2 algorithms given in Table E.14 withTx = 2000, Tu = 1900, block
lengthL = 3801 and FFT sizeC = 4096. The Bussgang nonlinearities are

gm(ut) =
p
2 sign(um;t). We use no prewhitening of the input signalsx(z).

The parameters of the algorithm are

BRLS2 � = 0:8

The channel-wise performance curves are given in Fig. 6.7.JICI andJISI are
defined in (6.132) and (6.133), respectively.
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6.15 Summary

In this chapter we extended the non-blind algorithms of the previous chapters
to work also in a blind environment, where the algorithm has no access to the
source signals. Guidelines are given how to modify an algorithm when a non-
blind error criterion is exchanged with a blind error criterion. In doing so, we
have also shown an alternative derivation of the well-known natural-gradient
learning algorithm.

Nonlinearity Simulations have shown that the separation capability of a blind
algorithm is almost unaffected by small deviations of the nonlinearitiesf(:) or

g(:) from their respective theoretical forms. In fact, the knowledge whether the
pdf of a source signal is super-Gaussian (more peaky than a Gaussian pdf) or
sub-Gaussian (flatter than a Gaussian pdf) is usually sufficient for a suitable
choice of the nonlinearity.

Non-Gaussianity of the source signals The “closer” the sources are dis-
tributed to a Gaussian distribution, the “harder” the problem becomes, e.g.,
source signals which are Gamma distributed are easier to separate and decon-
volve than signals which have a Laplacian distribution (�= 3). One possible
measure of the closeness to a Gaussian distributon is the kurtosis� of a sig-
nal, defined in (6.9). In the extreme, when all source signals are Gaussian
distributed (�=0), no separation or deconvolution is possible.

Simulations Simulation examples are presented, where many hundreds of
filter coefficients are adapted, showing the performance behavior of some of the
proposed algorithms. In fact, not all MCBD algorithms showed convergence.
For some update equations, the difficulty of finding a stable equilibrium point
is too high, due to the many coefficients which have to be adapted.

Same-source lock on One problem that sometimes comes up in blind source
separation is that a source signalsn appears at several outputsum. The so-
calledsame-source lock-onproblem can be detected by analyzing the row-wise
andcolumn-wise ICI of the global-system matrixG [70]. However, these mea-
surements are available in a simulation environment only. In a real-world ap-
plication, we have to monitor the determinant ofW. A small value ofdetW is
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an indication that a same-source lock-on problem is present. Some BSS algo-
rithms are robust against the same-source lock-on problem, e.g. , the infomax
algorithm, which containsW�1 explicitly in the update equation, the natural
gradient algorithm, and also the EASI algorithm.

6.15.1 Further topics in blind identification

In the following, we mention some topics related to blind identification.

BD realization in the time domain

In many real-time applications in acoustics, a low processing latency is impor-
tant, e.g. hands-free telephone. The block-wise processing of the data intro-
duces a latency delay of2L samples (2 blocks) for balanced processor load.
One block is required for collecting the new samples and giving out the com-
puted output samples, a second block delay is used for computing the filtering
and adaptation. Thus, the overall group delay is2L samples plus the group de-
lay of the filter. To reduce the overall delay, one can use a small block sizeL or
remain in the time domain. In fact, the algorithms proposed for BD and MCBD
can also be realized in the time domain. The filtering and the adaptation are
carried out at the sampling rateL=1 and not at the block rate. However, from
simulation examples it seems that a block-wise processing of the data helps
achieve a faster convergence of blind algorithms. An online learning algorithm
for BD and MCBD which is based on the natural gradient and realized in the
time-domain was given in [5,6,34]. See also the MATLAB example in [71].

Direct estimation of the mixing matrix

We can also transform an algorithm for blind source separation to directly es-
timate the mixing matrixA instead of the inverse mixing matrixW = ^A�1,
see also [27]. As an example we take the natural-gradient learning algorithm
shown in Table 6.2. Inverting both sides of the update equation and using the
matrix-inversion lemma (A.5), withA0 = Wt , H�1

t , B0 = �
�
I� ytuHt

�
,

C0 = I, andD0 =Wt gives

Ht+1 = Ht � �tHt
�
I� yt uHt

� �
I+ �t

�
I� yt uHt

���1
. (6.136)
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Algorithm Update equations

Infomax Ht+1 =Ht � �Ht
�
H�H
t � ytxHt

�
Ht

Natural gradient Ht+1 =Ht + �Ht
�
I� ytuHt

�
EASI Ht+1 =Ht + �Ht

�
I� utuHt + uty
H
t � ytuHt

�

Table 6.6: Update equations for direct estimation of the mixing matrix whereH = ^A and

xt=H
�1

t

ut.

For small values of�t we can either expand the matrix inverse in (6.136) with
(A.12) or replace it by the unity matrix in the latter case. We obtain

Ht+1 =Ht � �tHt
�
I� yt uHt

�

(6.137)

which is again a serial-update equation, but this time with multiplication from
the right, i.e.,Ht+1 =Ht4Ht with 4Ht = I � �t

�
I� yt uHt

�

. Adapting

H directly with (6.137) might be advantageous in the convolutive case. If the
elementsaij(z) of the mixing matrixA(z) have only a few terms, thenH(z)

needs only a few terms for the adaptation as well. However, we still have
to invertH(z) after every update step, because the output sequence is then

u=H�1(z)x(z).

Using the same steps we can also transform the other algorithms given in
Table 6.2. The resulting adaptation equations are listed in Table 6.6.

Overdetermined blind source separation

Most algorithms for BSS and MCBD assume a fully determined system, i.e.,
the same number of sensors as source signals. We refer to the situation where
more sensors than source signals are present asoverdetermined blind source
separation(M > Ms). Basically there are two different approaches. One is to
directly find an algorithm which copes with this situation. Another possibility
is to first apply a preprocessing stage withM input andMs output signals, and
then build the input signals of a subsequent stage, e.g., an ordinaryMs�Ms

BSS algorithm. Such a two-stage approach with a PCA (principle component
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ICAPCA

s A x uWsvWd

sensors virtual sensors

noise mixture

separated sourcessources

mixing process

Figure 6.8: Two-stage approach for overdetermined blind source separation
with Ms = 2 sources andM = 5 sensors: First stage PCA, second
stage ICA.

analysis) preprocessing stage is shown in Fig. 6.8, [60]. The PCA stage di-
vides theM -dimensional input space into anMs-dimensional signal-plus-noise
space and an(M �Ms)-dimensional noise space. The firstMs virtual sensors
are then used as the input signals of a subsequent ICA (independent compo-
nent analysis) stage. Overdetermined blind source separation is also known as
undercomplete-bases problem.

Underdetermined blind source separation

The case where fewer sensors than source signals are used (M < Ms) is cer-
tainly one of the big challenges in the field of ICA. If the source signals have
non-overlapping spectra, the task can easily be solved in the frequency do-
main. However, if they have overlapping spectra, then other methods have
to be used. Algorithms forunderdetermined blind source separationare de-
scribed in [1, 73, 74]. Underdetermined blind source separation is also known
asovercomplete-bases problem.

Mixture of sub- and super-Gaussian source signals

Most algorithms for BSS require prior knowledge, such as whether the source
signals are sub- or super-Gaussian to select a proper nonlinearity in advance. If
in the signal mixture the number of sub- and super-Gaussian source signals are
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known, often two different types of nonlinearities have to be used in the update
equations. However, if the characteristics of the source signals is unknown, the
blind algorithm has to estimate them online, e.g., by using parametric models
of the source-signal pdfs. Algorithms which separate a mixture of sub- and
super-Gaussian source signals are given in [32,79].
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Concluding remarks

7.1 Conclusions

In acoustics, the transfer function between a source and a sensor is usually mod-
eled by an FIR filter with hundreds or thousands of coefficients. This makes the
proposed algorithms for the multichannel convolutive-mixing case to be suit-
able for acoustical applications, e.g., the combination of speaker separation and
dereverberation of speech signals in a teleconferencing setup. However, in this
work we have not discussed how to make the algorithms also operate success-
fully in a real environment. Many of the algorithms have been shown to perform
well in a controlled simulation environment. In practice, several assumptions
will certainly not be fulfilled and therefore influence the performance behavior
of the algorithms, e.g., in stereophonic echo cancelling the source signals are
strongly correlated. Thus, further research still has to be done to analyze the
behavior with real-world signals.

7.2 Outlook and further directions

In this section, we list several topics related to blind and non-blind adaptive
filtering that are subject of ongoing research:
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7.2.1 Second-order statistics

Throughout this thesis we have assumed, that for blind algorithms the source
signals are stationary but non-Gaussian. Because of the stationarity, second-
order statistics are not capable of separating and deconvolving the source sig-
nals. However, second-order statistics can be sufficient for signal separation in
the following cases:

� The source signals are nonstationary [63,86–88,107],

� the source signals are mutually independent but temporally correlated
[10,56,80,82],

� the source signals are cyclostationary [103,104].

Whereas the first two situations appear in an acoustical environment, the last
one is often true in data communications.

7.2.2 Filter partitioning

A further step towards reducing the computational burden of multichannel adap-
tive filtering can be to introduce filter-partitioning techniques [97, 99]. Similar
to the overlap-save techniques, where the input sequence is partitioned into
non-overlapping blocks, the filters can be partitioned as well. In doing so, the
block sizeL can be reduced significantly without increasing the computational
complexity very much. Moreover, a smaller FFT size can be chosen, which
can even be smaller than the filter length. Filter partitioning is a technique of-
ten used in single-channel acoustical echo canceling [81]. Efficient methods
for multichannel filter partitioning and cascading two or more systems in the
partitioned frequency domain are given in [62].

7.2.3 Step-size control

Often adaptive algorithms reveal a poor performance behavior in a real environ-
ment, although they work well in simulation examples. The reason is that many
underlying assumptions from theory are not fulfilled in reality, e.g., stationar-
ity is probably not an adequate assumption for speech signals. In order to still
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obtain a satisfactory behavior of the adaptive algorithm, we have to perform on-
line monitoring of certain signals for the proper adjustment of the step size [6].
For example, if we detect a change of the system, we increase the step-size to
track the new situation. Or, if we know that the algorithm performs well, then
we can reduce the step size. Note, that the Kalman filter has such a step-size
control incorporated inherently in the update equations. Hence, knowing the
current environment is of great value for controlling the adaptive algorithm.

7.2.4 Bootstrap

One of the big problems of blind algorithms is their relatively slow convergence
rate, especially in the initial stage. Whereas non-blind adaptive algorithms re-
veal a steady decay of the performance curve from the beginning, blind algo-
rithms tend to show a poor initial performance. It is like searching for a mouse
hole on a soccer field: once you see the hole, you know in which direction you
have to walk. Thus, if one can find a bootstrap technique which can accelerate
the initial performance behavior, the overall convergence rate can be improved
significantly.

A method for BD or MCBD which has shown to be useful in simulation ex-
amples is to use a time- or performance-dependent filter lengthNw(t). Initially
we start to adapt a short filter, then enlare the filter length steadily with time.

Another technique which we refer to asdata re-using, is to carry out several
update steps with the same data block. This is some sort of combination of a
batch and a block-wise learning algorithm. The underlying idea comes from
(6.41) which is in fact a nonlinear equation for the separation matrixW(z) and
has to be solved iteratively.



Appendix A

General results

A.1 Differential entropy

Thedifferential entropyof a probability-density functionpU (u) is defined as

H( pU (:) ) , �
Z

pU (u) log pU (u) du (A.1)

= �E flog pU (u)g (A.2)

with H( pU (:) ) � 0.

A.2 Kullback-Leibler divergence

TheKullback-Leibler divergenceor relative entropybetween two probability-
density functionspU (u) andpS(s) is defined as [23]

D ( pU (:) k pS(:) ) ,
Z

pU (u) log
pU (u)

pS(u)
du (A.3)

= E
�

log
pU (u)

pS(u)
�

(A.4)
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whenever the integral exists. Properties ofD (:k:) areD ( pU (:) k pS(:) ) � 0

with equality iff pU (:) = pS(:) almost everywhere, andD ( pU (:) k pS(:) ) 6=

D ( pS(:) k pU (:) ).

A.3 Matrix-inversion lemma

If A0 andC0 are nonsingularM �M andN � N matrices, respectively, the
following equality holds [50,65,75]:

[A0 +B0C0D0]
�1
= A0�1 �A0�1B0

h
C0�1 +D0A0�1B0

i�1
D0A0�1 .

(A.5)

Proof: Premultiply both sides of (A.5) with[A0 +B0C0D0]. �

A.4 Inverse of a block matrix

If A�1 andD�1 exist, then we have [65]"
A 0

C D

#�1
=

"
A�1 0

D�1CA�1 D�1

#

(A.6)

and "
A B

0 D

#�1
=

"
A�1 A�1BD�1

0 D�1

#

. (A.7)

If A�1 exist, then we have"
A B

C D

#�1
=

"
A�1 +E��1F �E��1

���1F ��1

#

(A.8)

with

� = D�CA�1B (A.9)

E = A�1B (A.10)

F = CA�1 . (A.11)
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A.5 Matrix-inverse expansion

Under the assumption that the matrixE has a spectral norm smaller than 1
(�1 < 1), [51] the following matrix expansion holds

[I� E ]�1 = I+

1X
k=1

Ek =

1X
k=0

Ek (A.12)

Proof: Premultiply both sides of (A.12) with[I� E ]. �

A.6 Matrix inverse

The inverse of a nonsingular square matrixA can be derived using the follow-
ing closed form expression [65]

A�1 =
adjA

detA

(A.13)

whereadjA is theadjoint or adjugateof A anddetA is the determinant of

A. The elements of the adjoint matrix are calledcofactors

[adjA]mn = (�1)m+n det
�
A(nm)

�

. (A.14)

The submatrixA(nm) is obtained by deleting thenth row and themth column
ofA. Note,det(A(nm))=det((AT )(mn)) is called thenmth minor ofA.

Inverse of a polynomial matrix Likewise to ordinary matrices, the inverse
of a polynomial matrix can be written as

A�1(z) =
adjA(z)

detA(z)

(A.15)

with

[adjA(z)]mn = (�1)m+n
det

�
A(nm)(z)

�

. (A.16)
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A.7 SVD — Singular Value Decomposition

SVD of a matrix One of the most powerful tools from Linear Algebra is
thesingular value decomposition(SVD) of a matrix. A matrixAm�n can be
written as

A = U���VH = U
" e��� 0

0 0
#

VH (A.17)

whereUm�m andVn�n are unitary matrices,���m�n is a rectangular diagonal

matrix, ande���k�k

is a diagonal matrix of full rank. The diagonal elements of���

ande��� are the ordered singular values�1 � : : : � �k > �k+1 = : : : = �n = 0

if m � n � k andk is therank of A. The SVD is very helpful in analyzing
transformations from one space to another, whereas the eigenvalue decomposi-
tion (EVD) is more useful in analyzing a transformation from a space to itself,
e.g. , state-space model of a dynamic system.

SVD of a polynomial matrix The idea of a SVD of a scalar matrix can be
extended to polynomial matrices.

A(z) = U(z)���(z)VH(z) = U(z)
" e���(z) 0

0 0
#

VH(z) (A.18)

whereU(z)m�m andV(z)n�n areparaunitary matrices, ���(z)m�n is a rect-
angular diagonal matrix, ande���(z)k�k is a diagonal matrix whose elements are
nonzero. A paraunitary matrix has the property that

U(z)UH (z) = UH (z)U(z) = I . (A.19)

As a consequence,U�1(z) = UH (z) = UT
� (z

�1). In other words, the matrix

U is transposed, the elementsuij;k are complex conjugated and the polynomi-
alsuij(z) are time reversed, i.e.,z is replaced byz�1. Paraunitary matrices are
the multidimensional extension of allpass filters.

The filters�i(z) on the diagonal of��� are symmetric, linear-phase filters,

�i(z) = �i(z
�1). To make the matrix���(z) unique, a metric has to be specified,

sorting the diagonal elements of���(z), e.g. by usingk�i(z)kF .
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A.8 Pseudoinverse

Pseudoinverse of a matrix Let the SVD ofA be as in (A.17). TheMoore-
Penrose pseudoinverseofA is defined as

A# ,V���#
UH (A.20)

where���# is the transpose of��� in which the positive singular values ofA are
replaced by their reciprocals. Note, thatA�1 = V����1UH .

Pseudoinverse of a polynomial matrix Let the SVD ofA(z) be as in (A.18).
We define the pseudoinverse of a polynomial matrixA(z) as

A#(z) , V(z)���#(z)UH (z) (A.21)

where���#(z) is the transpose of��� in which the nonzero diagonal elements

�i(z) of ���(z) are replaced by their inverse��1i (z). The regular inverse is
defined asA�1(z) = V(z)����1(z)UH(z).
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The trace function

B.1 Definitions

The Frobenius norm and the trace of a matrix are denoted byk:kF andtr (:), re-
spectively.a = diag (A) is a vector whose elements are the diagonal elements
of A anddiag (a) is a square diagonal matrix which contains the elements of

a. ddiag(A ) zeros the off-diagonal elements ofA and

o�(A ) , A� ddiag(A ) (B.1)

zeros the diagonal elements ofA. For a square matrixA we haveddiag(A )=

diag (diag (A)).
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B.2 Basic properties of the trace function

Basic properties of the trace function:

tr(cA) = c tr(A) (B.2)

tr(AT ) = tr(A) (B.3)

tr(A�) = (tr(A))� (B.4)

tr(AH ) = (tr(A))� (B.5)

tr(A) =
X

m

�m(A) (B.6)

tr(Ak) =
X

m

�km(A) (B.7)

tr(AB) = tr(BA) (B.8)

tr(ABC) = tr(CAB) = tr(BCA) (B.9)

tr(A+B) = tr(A) + tr(B) (B.10)

Frobenius norm and trace function:

kAk2F , tr
�
AHA

�

(B.11)

ko�(A )k2F = kAk2F � kddiag(A )k2F (B.12)

tr (A ddiag(B )) = tr (ddiag(A )B) (B.13)

= tr (ddiag(A ) ddiag(B )) (B.14)

tr (o�(A ) ddiag(B )) = 0 . (B.15)
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B.3 Basic properties of the determinant

Determinant of a square matrix (AM�M ;BM�M ):

det(A) =
Y

m

�m(A) (B.16)

det(Ak) =
Y

m

�km(A) (B.17)

det(AT ) = det(A) (B.18)

det(A�) = (det(A))� (B.19)

det(cA) = cM det(A) (B.20)

det(Ak) = (det(A))k (B.21)

det(AB) = det(BA) = det(A) det(B) . (B.22)
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B.4 Derivatives with respect to a real matrix

The partial derivative of a real scalar functionJ(X) with respect to a real matrix

X is defined as �
@

@X
J(X)

�
mn

,

@J(X)

@xmn

. (B.23)

We have the following partial derivatives, see also [47]

@
@X

tr(X) = I (B.24)

@
@X

tr(AXB) = ATBT (B.25)

@
@X

tr(AXTB) = BA (B.26)

@
@X

tr(XX) = 2XT (B.27)

@
@X

tr(XTX) = 2X (B.28)

@
@X

tr(Xk) = k (XT )k�1 (B.29)

@
@X

tr(XAXB) = ATXTBT +BTXTAT (B.30)

@
@X

tr(XTAXB) = AXB+ATXBT (B.31)

@
@X

tr(XTAXTB) = AXTB+BXTA (B.32)

@
@X

tr(X�1) = � �X�1X�1
�T

(B.33)

@
@X

tr(AX�1B) = � �X�1BAX�1
�T

(B.34)

@
@X

tr(eX) = eX
T

(B.35)

@
@X

tr(eAXB) =
�
B eAXBA

�T

(B.36)

@
@X

det(X) = adj(XT ) = det(X)X�T (B.37)

@
@X

det(AXB) = det(AXB)X�T (B.38)

@
@X

log(j det(X)j) = 1

det(X)
@

@X
det(X) = X�T (B.39)
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We can expand a real functionJ (X) aroundX as

J (X+ dX) = J (X) + h @
@X

J (X) ; dX i+O�kdXk2F � (B.40)

with hA;Bi , tr
�
ABT

�

. For a real-valued matrixX, the gradient is defined
as

rXJ(X) ,

@
@X

J(X) . (B.41)

B.5 Derivatives with respect to a complex matrix1

After Brandwood [14], we can define the partial derivatives of a scalar function

J(X) with respect to a complex matrixX as�
@

@X
J(X)

�
mn

,

1
2

�
@J(X)

@xremn

� j
@J(X)

@ximmn

�

(B.42)�
@

@X� J(X)
�

mn

,

1
2

�
@J(X)

@xremn

+ j
@J(X)

@ximmn

�

(B.43)

whereX = [xmn] with xmn , xremn + j ximmn.

We can expand a complex-valued functionJ (X) aroundX as
J (X+ dX) = J (X) + h @
@X

J (X) ; dX� i+ h @
@X�
J (X) ; dX i+O�kdXk2F �

(B.44)

with hA;Bi , tr
�
ABH

�

. After Haykin [51], thecomplex gradient matrixcan
be defined as

rXJ(X) , 2

@
@X� J(X) . (B.45)

See also [102] for a nice treatment of this subject.

1Personal notes from Heinz Mathis
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We have the following partial derivatives with respect toX:

@
@X

tr(X) = I (B.46)

@
@X

tr(XH ) = 0 (B.47)

@
@X

tr(AXB) = ATBT (B.48)

@
@X

tr(AXTB) = BA (B.49)

@
@X

tr(AX�B) = 0 (B.50)

@
@X

tr(AXHB) = 0 (B.51)

@
@X

tr(XX) = 2XT (B.52)

@
@X

tr(XXT ) = 2X (B.53)

@
@X

tr(XX�) = XH (B.54)

@
@X

tr(XXH) = X� (B.55)

@
@X

tr(Xk) = k
�
XT

�k�1

(B.56)

@
@X

tr(
�
XH

�k
) = 0 (B.57)

@
@X

tr(XAXB) = ATXTBT +BTXTAT (B.58)

@
@X

tr(XHAXB) = ATX�BT (B.59)

@
@X

tr(XHAXHB) = 0 (B.60)

@
@X

tr(X�1) = � �X�1X�1
�T

(B.61)

@
@X

tr(AX�1B) = � �X�1BAX�1
�T

(B.62)

@
@X

tr(eX) = eX
T

(B.63)

@
@X

tr(eAXB) =
�
B eAXBA

�T

(B.64)

@
@X

det(X) = adj(XT ) = det(X)X�T (B.65)

@
@X

det(AXB) = det(AXB)X�T (B.66)

B.5. Derivatives with respect to a complex matrix 209

We have the following partial derivatives with respect toX�:

@
@X� tr(X) = 0 (B.67)

@
@X� tr(X

H ) = I (B.68)

@
@X� tr(AXB) = 0 (B.69)

@
@X� tr(AX

TB) = 0 (B.70)

@
@X� tr(AX

�B) = ATBT (B.71)

@
@X� tr(AX

HB) = BA (B.72)

@
@X� tr(XX) = 0 (B.73)

@
@X� tr(XX

T ) = 0 (B.74)
@

@X� tr(XX
�) = XT (B.75)

@
@X� tr(XX

H) = X (B.76)

@
@X� tr(X

k) = 0 (B.77)

@
@X� tr(

�
XH

�k
) = k

�
XH

�k�1

(B.78)

@
@X� tr(XAXB) = 0 (B.79)

@
@X� tr(X

HAXB) = AXB (B.80)

@
@X� tr(X

HAXHB) = AXHB+BXHA (B.81)

@
@X� tr(X

�1) = 0 (B.82)

@
@X� tr(AX

�1B) = 0 (B.83)

@
@X� tr(e

X) = 0 (B.84)

@
@X� tr(e

AXB) = 0 (B.85)

@
@X� det(X) = 0 (B.86)

@
@X� det(AXB) = 0 (B.87)



Appendix C

Norms

C.1 Frobenius norm

Let M be the inner product space of complex matrixes. Given two matricesA

andB with A;B 2 M , we define the scalar product of two matrices as

hA;Bi , tr
�
ABH

	

(C.1)

=
X

m

�
ABH

�
mm

=
X

m

X
n

amn b
�
mn . (C.2)

The induced norm is equivalent to theFrobenius norm, i.e.

kAkF ,
p
hA;Ai

=
sX

m

X
n

jamnj2 . (C.3)
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C.2 Inner product space of polynomial matrices

LetP be the inner product space of complex polynomial matrixes. LetA(z)=P
tAtz

�t andB(z) be two matrix polynomials or Laurent series.

Finite energy If A(z) orB(z) havefinite energy, e.g.,

P
t kAtk2F < 1 orP

t kBtk2F <1, we define the followinginner product

hA(z);B(z)iF ,
X

t

hAt;Bti (C.4)

=
X

t

tr
�
AtB
H
t

	

=
X

t

X
m

�
AtB
H
t

�
mm

=
X

t

X
m

X
n

amn;t b
�
mn;t (C.5)

= tr
�P0;0 �A(z)BH(z)
�	

. (C.6)

Finite power If A(z) andB(z) havefinite power, e.g.,

limT!1

1
2T+1

PT
t=�T kAtk2F <1, we define the inner product as

hA(z);B(z)iF , lim
T!1

1
2T + 1

TX
t=�T

hAt;Bti (C.7)

= lim
T!1

1
2T + 1

TX
t=�T

X
m

X
n

amn;t b
�
mn;t (C.8)

= lim
T!1

1
2T + 1

tr
�P0;0 �A(z)BH(z)
�	

(C.9)

for thedeterministic caseand as

hA(z);B(z)iF , E fhAt;Btig (C.10)

=
X

m

X
n

E
�
amn;t b
�
mn;t

	
(C.11)

for thestochastic case.
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Properties of inner products An inner producth:; :i has to fulfill the follow-
ing properties [68]:

hA(z) +B(z);C(z)iF = hA(z);C(z)iF + hB(z);C(z)iF (C.12)

h�A(z);B(z)iF = � hA(z);B(z)iF (C.13)

hA(z); �B(z)iF = �� hA(z);B(z)iF (C.14)

hA(z);B(z)iF = hB(z);A(z)i�F (C.15)

hA(z);A(z)iF � 0 (C.16)

hA(z);A(z)iF = 0 () A(z) = 0 . (C.17)

The proofs thath:; :iF fulfills these properties are easily obtained by using the
definitions in (C.5), (C.8), and (C.11).

C.3 Norm space of polynomial matrices

The inner producth:; :iF defines an induced norm onP given by
kA(z)kF ,

q
hA(z);A(z)iF (C.18)

and ametriconP induced by the norm

d (A(z);B(z)) , kA(z)�B(z)kF . (C.19)

Finite energy If A(z) hasfinite energy, the induced norm (C.18) becomes
with (C.4)

kA(z)kF =
sX

t

kAtk2F =
sX

t

X
m

X
n

jamn;tj2 . (C.20)

Finite power If A(z) hasfinite power, the induced norm (C.18) becomes
with (C.7)

kA(z)kF = lim
T!1

vuut 1
2T + 1

TX
t=�T

kAtk2F (C.21)



214 Appendix C. Norms

for the deterministic case and with (C.10)

kA(z)kF =
q

E f kAtk2F g (C.22)

for the stochastic case.

Properties of norms A normk:k has the following properties [54,68]:

kA(z)kF � 0 (C.23)

kA(z)kF = 0 () A(z) = 0 (C.24)

k�A(z)kF = j�j kA(z)kF (C.25)

kA(z) +B(z)kF � kA(z)kF + kB(z)kF (C.26)

where (C.26) is thetriangle inequalitywhere the equality sign holds ifB(z) =

0 or A(z) = cB(z). Furthermore, an inner product and the corresponding
norm satisfy theSchwarz inequality

j hA(z);B(z)iF j � kA(z)kF kB(z)kF (C.27)

with equality iff fA(z);B(z)g is a linearly dependent set. Comparing (C.20)
with (C.3), we see thatkA(z)kF with A(z) 2 P is a natural extension of the
Frobenius normkAkF forA 2 M . We therefore refer tok:kF as theFrobenius
norm for polynomial matrices.

Appendix D

Projection operators

D.1 Generalized remainder< : >a;b

In this section we define thegeneralized remainder< : >a;b and thesymmetric
remainder< : >C . We will write < t >0;C�1 to denote the standard remain-
der whent is divided by the non-zero integerC. The range of< t >0;C�1 is

f0; � � � ; C � 1g. We introduce the following definitions:

< t >0;C�1 , t� bt=Cc � C = t mod C (D.1)

< t >a;b , a+< t� a >0;b�a+1 (D.2)

= a+ (t� a mod b� a+ 1) (D.3)

< t >C , < t >�bC=2c;bC=2c (D.4)

With < t >b;a we denote the generalized remainder whent is divided byb �

a + 1 wherea; b are integers andb > a. For integer values oft, the domain
of the remainder< : >a;b is fa; � � � ; bg. Finally, with< t >C we denote the
symmetric remainder (C odd) whent is divided byC. The domain of< t >C

is f�bC=2c; � � � ; bC=2cg. Fig. D.1 illustrates examples of the generalized re-
mainder with different parameter sets. All of them have 7 elements in their
domain.
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Generalized and symmetric generalized remainders have the following prop-
erties:

< t >C =�< �t >C (D.5)

< t+ kC >C =< t >C (D.6)

< t+ kC >0;C�1 =< t >0;C�1 (D.7)

< t+ k(b� a+ 1) >a;b=< t >a;b (D.8)

Eq.(D.5) means that< t >C is an odd function, i.e., symmetric w.r.t. the origin.

D.2 Polynomial projection operators

D.2.1 Polynomial projection operatorP

Let x(z) =
P1

�1 xtz
�t be the double-sidedz-transform (Laurent series) of

the sequencex. We define thepolynomial projection operatorP as follows:

P0;C�1 (x(z)) ,
C�1X

t=0
xt z
�t = x0 + � � �+ xC�1z
�C+1 (D.9)

Pa;b (x(z)) ,
(Pb

t=a xt z
�t = xaz
�a + � � �+ xbz
�b a � b

0 a > b

.

(D.10)

Pa;b (x(z)) with b � a returns the sub-polynomial ofx(z) which contains the
terms with the powers fromz�a to z�b. Furthermore, we define thesymmetric
polynomial projection operator

PC (x(z)) , P�bC=2c;bC=2c (x(z)) =
bC=2cX

t=�bC=2c
xt z
�t (D.11)

= x�bC=2cz
+bC=2c + � � �+ xbC=2cz
�bC=2c . (D.12)

with C � 0 and odd.PC (x(z)) returns the sub-polynomial ofx(z) which
contains the terms with the powers fromz+bC=2c to z�bC=2c.
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Figure D.1: Generalized remainder function:
(a) < t >0;6 : t 7�! f0; � � � ; 6g,
(b) < t >�2;4 : t 7�! f�2; � � � ; 4g,
(c) < t >�3;3 = < t >7 : t 7�! f�3; � � � ; 3g.

Properties ofP

Basic properties (� = complex value)

Pt;t (x(z)) = xt z
�t (D.13)

Pa;b (x(z)) =
Xb

t=a
Pt;t (x(z)) (D.14)

Pa;b (�x(z)) = �Pa;b (x(z)) (D.15)

P�a;b (�x(z)) = �� P�a;b (x(z)) (D.16)

Pa;b (x(z) + y(z)) = Pa;b (x(z)) + Pa;b (y(z)) (D.17)

Pa;b
�X

k
xk(z)

�
=

X
k
Pa;b (xk(z)) (D.18)

Pa;c (x(z)) = Pa;b (x(z)) + Pb+1;c (x(z)) (a � b < c) (D.19)

Pa;b (Pa;b (x(z))) = Pa;b (x(z)) (D.20)

Pa;b (Pc;d (x(z))) = Pc;d (Pa;b (x(z))) (D.21)

= Pmax(a;c);min(b;d) (x(z)) . (D.22)
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Properties of time reversal, transposition, and complex conjugation

P�a;b (x(z)) = P�b;�a (x�(z)) (D.23)

Pa;b (x�(z)) = Pa;b
�
x�(z
�1)
�
= P��b;�a (x(z)) (D.24)

Pa;b
�
x(z�1)

�
= P��b;�a (x�(z)) (D.25)

Pa;b (x�(z)) = P��b;�a
�
x(z�1)

�

(D.26)

PC (x�(z)) = P�C (x(z)) (D.27)

PC
�
x(z�1)

�
= P�C (x�(z)) (D.28)

Pa;b
�
XT (z)

�
= PTa;b (X(z)) (D.29)

Pa;b
�
XH(z)

�
= Pa;b

�
XT
� (z

�1)
�
= PH�b;�a (X(z)) (D.30)

PHa;b (X(z)) = P�b;�a
�
XH(z)

�

. (D.31)

Properties of time shifting

Pt;t (x(z)) = z�tP0;0
�
ztx(z)

�

(D.32)

Pa;b (x(z)) = z�aP0;b�a (zax(z)) (D.33)

Pa;b (x(z)) = zdPa+d;b+d
�
z�d x(z)

�

(D.34)

z�dPa;b (x(z)) = Pa+d;b+d
�
z�d x(z)

�

(D.35)

Pa;b
�
zd x(z)

�
= zdPa+d;b+d (x(z)) (D.36)

z�dPa;b
�
zd x(z)

�
= Pa+d;b+d (x(z)) (D.37)

Pt;t (y(z)) Pa;b (x(z)) = Pa+t;b+t (Pt;t (y(z)) x(z)) (D.38)

P�t;t (y(z)) Pa;b (x(z)) = Pa�t;b�t
�P�t;t (y(z)) x(z)� . (D.39)

Properties of the inverse (x(z) has at least two terms)

Pa;b (x(z))Pa;b
�
x�1(z)

� 6= 1 (D.40)

x(z)Pa;b
�
x�1(z)

� 6= 1 . (D.41)

Most of these properties can easily be proved by applying (D.14) and (D.13).
The task is then simplified to prove the properties witha = b.
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We have some more involved properties (a � b , c � d)

Xb
t=a
Pt;t (x(z)) P�t;t (y(z)) =

Xb
t=a

xt y
�
t (D.42)

= P0;0 (Pa;b (x(z)) y�(z)) (D.43)

= P0;0
�
x(z)P�a;b (y(z))

�
(D.44)

= P0;0
�Pa;b (x(z)) P�a;b (y(z))� (D.45)Xb

t=a
Pt;t (x(z)) P�t�d;t�d (y(z)) =

Xb
t=a

z�d xt y
�
t�d (D.46)

= Pd;d (Pa;b (x(z)) y�(z)) (D.47)

= Pd;d
�
x(z)P�a�d;b�d (y(z))

�

(D.48)

= Pd;d
�Pa;b (x(z)) P�a�d;b�d (y(z))�

(D.49)Xb
t=a
Pt+d;t+d (x(z)) P�t;t (y(z)) =

Xb
t=a

z�d xt+d y
�
t (D.50)

= Pd;d (Pa+d;b+d (x(z)) y�(z)) (D.51)

= Pd;d
�
x(z)P�a;b (y(z))

�

(D.52)

= Pd;d
�Pa+d;b+d (x(z)) P�a;b (y(z))� .

(D.53)

The more general case (c � d)
Xb

t=a
Pt;t (x(z)) P�t�d;t�c (y(z)) = Pc;d (Pa;b (x(z)) y�(z)) (D.54)Xb

t=a
Pt+c;t+d (x(z)) P�t;t (y(z)) = Pc;d

�
x(z)P�a;b (y(z))

�

. (D.55)

Proof of (D.54): We start with the left side of (D.54) and apply (D.23), (D.38),
(D.18), and (D.14)

Xb
t=a
Pt;t (x(z)) P�t�d;t�c (y(z)) =

Xb
t=a
Pt;t (x(z))P�t+c;�t+d (y�(z))

=
Xb

t=a
Pc;d (Pt;t (x(z)) y�(z))

= Pc;d
�Xb

t=a
Pt;t (x(z)) y�(z)

�

= Pc;d (Pa;b (x(z)) y�(z)) . �
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Alternative representation of x(z)

Alternatively, we can writex(z) =
P1

t=�1 xtz
�t as

x(z) =

1X
k=�1

kC+C�1X
t=kC

xt z
�t (D.56)

=

1X
k=�1

C�1X
t=0

xt+kC z�t�kC (D.57)

=

1X
k=�1

z�kC
C�1X

t=0
xt+kC z�t =

1X
k=�1

z�kCxk(z) (D.58)

=
C�1X

t=0

z�t

1X
k=�1

xt+kC z�kC =
C�1X

t=0

z�t x
(p)
t

�
zC

�

. (D.59)

Eq. (D.59) is called thepolyphase representation ofx(z) [38] with x
(p)
t (z) ,P1

k=�1 xt+kC z�k, whereas (D.58) representsx(z) partitioned into consecu-
tive non-overlapping blocks of lengthC. Using the definition in (D.10), we can
reformulate (D.56) and (D.58), and obtain the following identities

x(z) =

1X
k=�1

PkC;kC+C�1 (x(z)) (D.60)

=

1X
k=�1

z�kC P0;C�1
�
zkC x(z)

�
=

1X
k=�1

z�kC xk(z) (D.61)

xk(z) = zkC PkC;kC+C�1 (x(z)) = P0;C�1
�
zkC x(z)

�

. (D.62)

By doing similar calculations we obtain the general identities(C=b� a+ 1)

x(z) =

1X
k=�1

Pa+kC;b+kC (x(z)) (D.63)

=

1X
k=�1

z�kC Pa;b
�
zkC x(z)

�
=

1X
k=�1

z�kC xk(z) (D.64)

xk(z) = zkC Pa+kC;b+kC (x(z)) = Pa;b
�
zkC x(z)

�
(D.65)
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and by using the symmetric polynomial projection operator

x(z) =

1X
k=�1

z�kC PC
�
zkC x(z)

�
=

1X
k=�1

z�kC xk(z) (D.66)

xk(z) = PC
�
zkC x(z)

�

. (D.67)

D.2.2 Circular polynomial projection operator ~P

Let x(z) =
P1

t=�1 xtz
�t. We define thecircular polynomial projection op-

erator ~P as

~P0;C�1 (x(z)) =
1X

t=�1

xt z
�<t>0;C�1 (D.68)

~Pa;b (x(z)) =
1X

t=�1

xt z
�<t>a;b (D.69)

~PC (x(z)) =

1X
t=�1

xt z
�<t>C (D.70)

where< t >a;b denotes the generalized remainder defined in (D.2).~PC (:) is
thesymmetric circular polynomial projection operator. Similar toPC (:), we
requireC to be odd andC � 1 for ~PC (:).

Alternatively, we can write (D.68) as

~P0;C�1 (x(z)) = x(z) mod z�C � 1 (D.71)

wherex(z) mod z�C � 1 denotes the remainder of the division ofx(z) by

z�C � 1 over the field of polynomials [13].
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We have the following useful relations(C=b� a+ 1)

~P0;C�1 (x(z)) ,
1X

k=�1

P0;C�1
�
zkC x(z)

�

(D.72)

=

1X
k=�1

zkC PkC;kC+C�1 (x(z)) (D.73)

=

1X
k=�1

C�1X
t=0

xt+kC z�t =
C�1X

t=0
z�t

1X
k=�1

xt+kC (D.74)

= ~x0 + � � �+ ~xC�1z
�C+1 (D.75)

~Pa;b (x(z)) ,
1X

k=�1

Pa;b
�
zkC x(z)

�

(D.76)

=

1X
k=�1

zkC Pa+kC;b+kC (x(z)) (D.77)

=

1X
k=�1

bX
t=a

xt+kC z�t (D.78)

= ~xaz
�a + � � �+ ~xbz
�b (D.79)

~PC (x(z)) ,

1X
k=�1

PC
�
zkC x(z)

�

(D.80)

=

1X
k=�1

zkC P�bC=2c+kC;bC=2c+kC (x(z)) (D.81)

=

1X
k=�1

bC=2cX
t=�bC=2c

xt+kL z
�t (D.82)

= ~x�bC=2cz
+bC=2c + � � �+ ~xbC=2cz
�bC=2c , ~x(z) . (D.83)
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Properties of ~P

Basic properties (� = complex value)

~P0;0 (x(z)) =
1X

k=�1

xk (D.84)

~Pt;t (x(z)) = z�t ~P0;0 (x(z)) (D.85)

~Pa;b (�x(z)) = � ~Pa;b (x(z)) (D.86)

~P�a;b (�x(z)) = �� ~P�a;b (x(z)) (D.87)

~Pa;b (x(z) + y(z)) = ~Pa;b (x(z)) + ~Pa;b (y(z)) (D.88)

~Pa;b
�X

k
xk(z)

�
=

X
k

~Pa;b (xk(z)) (D.89)

~Pa;b
�
~Pa;b (x(z))

�
= ~Pa;b (x(z)) . (D.90)

Properties of complex conjugation, time reversal, and complex conjugation

~P�a;b (x(z)) = ~P�b;�a (x�(z)) (D.91)

~Pa;b (x�(z)) = ~Pa;b
�
x�(z
�1)
�
= ~P��b;�a (x(z)) (D.92)

~Pa;b
�
x(z�1)

�
= ~P��b;�a (x�(z)) (D.93)

~Pa;b (x�(z)) = ~P��b;�a
�
x(z�1)

�

(D.94)

~PC (x�(z)) = ~P�C (x(z)) (D.95)

~PC
�
x(z�1)

�
= ~P�C (x�(z)) (D.96)

~Pa;b
�
XT (z)

�
= ~PTa;b (X(z)) (D.97)

~Pa;b
�
XH(z)

�
= ~Pa;b

�
XT
� (z

�1)
�
= ~PH�b;�a (X(z)) (D.98)

~PHa;b (X(z)) = ~P�b;�a
�
XH(z)

�

. (D.99)

Properties of time shifting

~Pa;b (x(z)) = z�a ~P0;b�a (zax(z)) (D.100)

~Pa;b (x(z)) = zd ~Pa+d;b+d
�
z�d x(z)

�

(D.101)

z�d ~Pa;b (x(z)) = ~Pa+d;b+d
�
z�d x(z)

�

(D.102)

~Pa;b
�
zd x(z)

�
= zd ~Pa+d;b+d (x(z)) (D.103)

z�d ~Pa;b
�
zd x(z)

�
= ~Pa+d;b+d (x(z)) . (D.104)
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Furthermore,~P also has the following properties(k 2 Z)

~P0;C�1 (x(z)) = ~P0;C�1
�
zkC x(z)

�

(D.105)

~Pa;b (x(z)) = ~Pa;b
�
zk(b�a+1) x(z)

�

(D.106)

~PC (x(z)) = ~PC
�
zkC x(z)

�

(D.107)

~PkC;kC+C�1 (x(z)) = z�kC ~P0;C�1 (x(z)) (D.108)

~Pa+k(b�a+1);b+k(b�a+1) (x(z)) = z�k(b�a+1) ~Pa;b (x(z)) . (D.109)

Properties of products

~Pa;b (x(z) y(z)) = ~Pa;b
�
x(z) ~Pa;b (y(z))

�

(D.110)

= ~Pa;b
�
~Pa;b (x(z)) ~Pa;b (y(z))

�

. (D.111)

Properties of the inverse (use (D.110) and (D.111) withy(z) = x�1(z))

~Pa;b
�
~Pa;b (x(z)) ~Pa;b
�
x�1(z)

��
= 1 (D.112)

~PC
�
~PC (x(z)) ~PC
�
x�1(z)

��
= 1 (D.113)

~Pa;b
�
x�1(z)

�
= ~Pa;b

��
~Pa;b (x(z))

��1�

(D.114)

~PC
�
x�1(z)

�
= ~PC

��
~PC (x(z))

��1�

. (D.115)

Combined properties ofP and ~P

Pa;b
�
~Pa;b (x(z))

�
= ~Pa;b (x(z)) (D.116)

~Pa;b (Pa;b (x(z))) = Pa;b (x(z)) (D.117)

but in generalPa;b
�
~Pa;b (x(z))

�
6= ~Pa;b (Pa;b (x(z))).

Examples

P�Tx;Tx (x(z)) = P2Tx+1 (x(z)) =

TxX
t=�Tx

xt z
�t (D.118)

~P�Tx;Tx (x(z)) = ~P2Tx+1 (x(z)) =

TxX
t=�Tx

1X
k=�1

xt+k(2Tx+1) z
�t (D.119)

D.2. Polynomial projection operators 225

Polynomial matrices or matrix polynomial

The projection operatorsP and ~P applied on polynomial matrices or a matrix
polynomial is straightforward, i.e.Pa;b (A(z)) =

Pb
n=aAnz

�n.

Sequences

The projection operatorsP and ~P applied on sequences are defined similarly
as for polynomials, i.e.

Pa;b (f: : : ; xa; : : : ; xb; : : :g) = f: : : ; 0; xa; : : : ; xb; 0; : : :g.



Appendix E

Update equations

In this Appendix we summarize the update equations of the algorithms for sys-
tem identification, inverse modeling, and blind identification. The derivation
of the non-blind algorithms is given in Chapter 2,4, and 5, those of the blind
algorithms in Chapter 6.
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cost function ^A ^A�1

JMSE-x Ht �! Wt = H�1
t

RLS1-Hx �! RLS1-Wx

LMS1-Hx �! LMS1a-Wx, LMS1b-Wx

LMS2-Hx �! LMS2a-Wx, LMS2b-Wx

JMSE-s Ht =W�1
t  � Wt

RLS2-Hs  � RLS2-Ws

LMS3a-Hs, LMS3b-Hs  � LMS3-Ws

LMS4a-Hs, LMS4b-Hs  � LMS4-Ws

Table E.1: Relationships between update equations. We can choose betweenJMSE-x or JMSE-s
for the desired cost functions and can either updateHt orWt.

non-blind algorithm blind algorithm

RLS1-Wx �! BRLS1a, BRLS1b, BRLS1c

RLS2-Ws �! BRLS2

LMS1a-Wx �! BLMS1a

LMS1b-Wx �! BLMS1b

LMS2a-Wx �! BLMS2a

LMS2b-Wx �! BLMS2b

Table E.2: Relationships between non-blind and blind update equations.
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Algorithm Update equations

RLS1-Hx ��t =

1� �

�+ (1� �) sHt ^R
�1
sst�1st

Ht+1 =Ht + ��t ext s
H
t

^R�1
sst�1

^R�1
sst
= 1
�

�
^R�1
sst�1
� ��t ^R
�1
sst�1
sts
H
t

^R�1
sst�1

�

RLS2-Hs �t =

1� �

�+ (1� �)xHt ^R
�1
xxt�1^xt

Ht+1 =Ht + �t extx
H
t

^R�1
xxt�1
Ht

��t =

1� �

�+ (1� �)xHt ^R
�1
xxt�1xt

^R�1
xxt
= 1
�

�
^R�1
xxt�1
� ��t ^R
�1
xxt�1
xtx
H
t

^R�1
xxt�1

�

LMS1-Hx Ht+1 =Ht + � exts
H
t

LMS2-Hx Ht+1 = (1� �)Ht + �xts
H
t

LMS3a-Hs Ht+1 =Ht +

�

1��xHt ext
extx
H
t Ht

LMS4a-Hs

LMS3b-Hs Ht+1 =Ht + � extx
H
t

�
I� � extx
H
t

��1
Ht

LMS4b-Hs

Table E.3: Update equations forsystem identification of an instantaneous mixing system.

(ext , xt � ^xt)



230 Appendix E. Update equations

Algorithm Update equations

RLS1-Hx ��t =

1� �

�+ (1� �) s�t ^r
�1
sst�1st

ht+1 = ht + ��t exts
�
t ^r

�1
sst�1

^r�1sst =
1
�

�
^r�1sst�1 � ��t^r
�1
sst�1
sts
�
t ^r

�1
sst�1

�

RLS2-Hs �t =

1� �

�+ (1� �) x�t ^r
�1
xxt�1 ^xt

ht+1 = ht + �t extx
�
t ^r

�1
xxt�1
ht

��t =

1� �

�+ (1� �) x�t ^r
�1
xxt�1xt

^r�1xxt =
1
�

�
^r�1xxt�1 � ��t^r
�1
xxt�1
xtx
�
t ^r

�1
xxt�1

�

LMS1-Hx ht+1 = ht + � exts
�
t

LMS2-Hx ht+1 = (1� �) ht + �xts
�
t

LMS3a-Hs ht+1 = ht +

�

1��x�t ext
extx
�
tht

LMS4a-Hs

LMS3b-Hs ht+1 = ht + � extx
�
t [1� � extx

�
t ]

�1
ht

LMS4b-Hs

Table E.4: Update equations forgain identification. (ext , xt � ^xt)
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Algorithm Update equations

RLS1-Hx ���k = (1� �)
�

�I+ (1� �) �SHk
�^R
�1
ssk�1
�Sk

��1

�Hk+1 = �Hk + ���k
�Exk
�SHk
�^R
�1
ssk�1

�^R
�1
ssk
= 1
�

�
�^R
�1
ssk�1
� ���k �^R

�1
ssk�1
�Sk�S
H
k

�^R
�1
ssk�1

�

RLS2-Hs ��k = (1� �)
�

� I+ (1� �) �XH
k

�^R
�1
xxk�1

�^Xk
��1

�Hk+1 = �Hk + ��k
�Exk
�XH
k

�^R
�1
xxk�1
�Hk

���k = (1� �)
�

� I+ (1� �) �XH
k

�^R
�1
xxk�1
�Xk

��1

�^R
�1
xxk
= 1
�

�
�^R
�1
xxk�1
� ���k �^R

�1
xxk�1
�Xk
�XH
k

�^R
�1
xxk�1

�

LMS1-Hx �Hk+1 = �Hk + ��Exk
�SHk

LMS2-Hx �Hk+1 = (1� �) �Hk + ��Xk
�SHk

LMS3a-Hs �Hk+1 = �Hk + �
�
I� ��XH �Exk

��1 �Exk
�XH
k

�Hk

LMS4a-Hs

LMS3b-Hs �Hk+1 = �Hk + ��Exk
�XH
k

�
I� ��Exk
�XH
k

��1 �Hk

LMS4b-Hs

Table E.5: Update equations forsingle-channel system identification. By extending the diag-
onal matrices to block diagonal matrices, e.g.�Hk ! Hk, etc., we obtain the update

equations for MIMO system identification.(�Exk ,

�Xk �
�^Xk)
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Algorithm Update equations

RLS1-Hx ��k = (1� �)
�

�I+ (1� �)S
H
k

^R
�1

ssk�1
Sk

��1

Hk+1 =Hk + ��kExk
S

H
k

^R
�1

ssk�1

^R
�1

ssk
= 1
�

�
^R

�1
ssk�1
� ��k ^R

�1
ssk�1
SkS

H
k

^R
�1

ssk�1
�

RLS2-Hs �k = (1� �)
�

� I+ (1� �)X
H
k

^R
�1

xxk�1
^Xk

��1

Hk+1 =Hk + �kExk
X

H
k

^R
�1

xxk�1
Hk

��k = (1� �)
�

� I+ (1� �)X
H
k

^R
�1

xxk�1
Xk

��1

^R
�1

xxk
= 1
�

�
^R

�1
xxk�1
� ��k ^R

�1
xxk�1
XkX

H
k

^R
�1

xxk�1
�

LMS1-Hx Hk+1 =Hk + �Exk
S

H
k

LMS2-Hx Hk+1 = (1� �)Hk + �XkS
H
k

LMS3a-Hs Hk+1 =Hk + �
h
I� �X

H
Exk

i�1
Exk
X

H
k Hk

LMS4a-Hs

LMS3b-Hs Hk+1 =Hk + �Exk
X

H
k

h
I� �Exk
X

H
k

i�1
Hk

LMS4b-Hs

Table E.6: Update equations formultichannel system identification. By substituting the block
diagonal matrices to diagonal matrices, e.g.Hk ! �Hk , etc., we obtain the update

equations for SISO system identification.(Exk , Xk � ^Xk)
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Algorithm Update equations

RLS1-Wx �t =

1� �

�+ (1� �) sHt ^R
�1
sst�1ut

Wt+1 =Wt + �t ests
H
t

^R�1
sst�1
Wt

��t =

1� �

�+ (1� �) sHt ^R
�1
sst�1st

^R�1
sst
= 1
�

�
^R�1
sst�1
� ��t ^R
�1
sst�1
sts
H
t

^R�1
sst�1

�

RLS2-Ws ��t =

1� �

�+ (1� �)xHt ^R
�1
xxt�1xt

Wt+1 =Wt + ��t estx
H
t

^R�1
xxt�1

^R�1
xxt
= 1
�

�
^R�1
xxt�1
� ��t ^R
�1
xxt�1
xtx
H
t

^R�1
xxt�1

�

LMS1a-Wx Wt+1 =Wt +

�

1��sHt est
ests
H
t Wt

LMS1b-Wx Wt+1 =Wt + � ests
H
t

�
I� � ests
H
t

��1
Wt

LMS2a-Wx Wt+1 =

1
1��

�
I� �

1��+�sHt ut
uts
H
t

�
Wt

LMS2b-Wx Wt+1 =
�
(1� �)I+ �uts
H
t

��1
Wt

LMS3-Ws Wt+1 =Wt + � estx
H
t

LMS4-Ws Wt+1 =Wt + �
�
W�H
t � utxHt

�

Table E.7: Update equations forinverse modelingof an instantaneous mixing system.(est ,

st � ut)
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Algorithm Update equations

RLS1-Wx �t =

1� �

�+ (1� �) s�t ^r
�1
sst�1ut

wt+1 = wt + �t ests
�
t ^r

�1
sst�1
wt

��t =

1� �

�+ (1� �) s�t ^r
�1
sst�1st

^r�1sst =
1
�

�
^r�1sst�1 � ��t^r
�1
sst�1
sts
�
t ^r

�1
sst�1

�

RLS2-Ws ��t =

1��

�+(1��)x�t ^r
�1
xxt�1
xt

wt+1 = wt + ��t estx
�
t ^r

�1
xxt�1

^r�1xxt =
1
�

�
^r�1xxt�1 � ��t^r
�1
xxt�1
xtx
�
t ^r

�1
xxt�1

�

LMS1a-Wx wt+1 = wt +

�

1�� s�t est
ests
�
twt

LMS1b-Wx wt+1 = wt + � ests
�
t [1� � ests

�
t ]

�1
wt

LMS2a-Wx wt+1 = 1
1��

�
1� �

1��+�s�t ut
uts
�
t

�
wt

LMS2b-Wx wt+1 = [(1� �) + �uts
�
t ]

�1
wt

LMS3-Ws wt+1 = wt + � estx
�
t

LMS4-Ws wt+1 = wt + �
�
w��t � utx
�
t

�

Table E.8: Update equations forinverse-gain identification. (est , st � ut)
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RLS1-Wx ��k = (1� �)
�

� I+ (1� �) �SHk
�^R
�1
ssk�1
�Uk

��1

�Wk+1 = �Wk + ��k
�Esk
�SHk
�^R
�1
ssk�1
�Wk

���k = (1� �)
�

� I+ (1� �) �SHk
�^R
�1
ssk�1
�Sk

��1

�^R
�1
ssk
= 1
�

�
�^R
�1
ssk�1
� ���k �^R

�1
ssk�1
�Sk�S
H
k

�^R
�1
ssk�1

�

RLS2-Ws ���k = (1� �)
�

� I+ (1� �) �XH
k

�^R
�1
xxk�1
�Xk

��1

�Wk+1 = �Wk + ���k
�Esk
�XH
k

�^R
�1
xxk�1

�^R
�1
xxk
= 1
�

�
�^R
�1
xxk�1
� ���k �^R

�1
xxk�1
�Xk
�XH
k

�^R
�1
xxk�1

�

LMS1a-Wx �Wk+1 = �Wk + �
�
I� ��SHk
�Esk
��1 �Esk
�SHk
�Wk

LMS1b-Wx Wk+1 =Wk + ��Esk
�SHk
�
I� ��Esk
�SHk
��1
Wk

LMS2a-Wx �Wk+1 = 1
1��

�
I� �

�
(1� �)I+ ��SHk
�Uk
��1 �Uk
�SHk

�
�Wk

LMS2b-Wx �Wk+1 =
�
(1� �)I+ ��Uk
�SHk
��1 �Wk

LMS3-Ws �Wk+1 = �Wk + ��Esk
�XH
k

LMS4-Ws �Wk+1 = �Wk + �
�
�W�H
k � �Uk
�XH
k

�

Table E.9: Update equations forsingle-channel inverse modelling. By extending the diagonal
matrices to block diagonal matrices, e.g.�Wk ! Wk, etc., we obtain the update
equations for MIMO inverse modelling.(�Esk ,

�Sk � �Uk)
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Algorithm Update equations

RLS1-Wx �k = (1� �)
�

� I+ (1� �)S
H
k

^R
�1

ssk�1
Uk

��1

Wk+1 =Wk + �kEsk
S

H
k

^R
�1

ssk�1
Wk

��k = (1� �)
�

� I+ (1� �)S
H
k

^R
�1

ssk�1
Sk

��1

^R
�1

ssk
= 1
�

�
^R

�1
ssk�1
� ��k ^R

�1
ssk�1
SkS

H
k

^R
�1

ssk�1
�

RLS2-Ws ��k = (1� �)
�

� I+ (1� �)X
H
k

^R
�1

xxk�1
Xk

��1

Wk+1 =Wk + ��kEsk
X

H
k

^R
�1

xxk�1

^R
�1

xxk
= 1
�

�
^R

�1
xxk�1
� ��k ^R

�1
xxk�1
XkX

H
k

^R
�1

xxk�1
�

LMS1a-Wx Wk+1 =Wk + �
h
I� �S

H
k Esk

i�1
Esk
S

H
k Wk

LMS1b-Wx Wk+1 =Wk + �EskS
H
k

h
I� �EskS

H
k

i�1
Wk

LMS2a-Wx Wk+1 = 1
1��

�
I� �

h
(1� �)I+ �S

H
k Uk

i�1
UkS

H
k

�
Wk

LMS2b-Wx Wk+1 =
h

(1� �)I+ �UkS
H
k

i�1
Wk

LMS3-Ws Wk+1 =Wk + �Esk
X

H
k

LMS4-Ws Wk+1 =Wk + �
�
W

�H
k �UkX

H
k

�

Table E.10: Update equations formultichannel inverse modelling. By substituting the block
diagonal matrices to diagonal matrices, e.g.Wk ! �Wk, etc., we obtain the
update equations for SISO system identification.(Esk , Sk �Uk)
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Algorithm Update equations

BRLS1a �t =

1� �

�+ (1� �)uHt ^R
�1
sst�1ut

Wt+1 =Wt + �t ebtu
H
t

^R�1
sst�1
Wt

BRLS1b �t =

1� �

�+ (1� �)uHt ^R
�1
ss ut

Wt+1 =Wt + �t
�
I� ytuHt

�
^R�1
ss Wt

BRLS1c �t =

1� �

�+ (1� �)uHt ut

Wt+1 =Wt + �t
�
I� ytuHt

�
Wt

BRLS2 ��t =

1� �

�+ (1� �)xHt ^R
�1
xxt�1xt

Wt+1 =Wt + ��t ebtx
H
t

^R�1
xxt�1

^R�1
xxt
= 1
�

�
^R�1
xxt�1
� ��t ^R
�1
xxt�1
xtx
H
t

^R�1
xxt�1

�

BLMS1a Wt+1 =Wt +

�

1��uHt ebt
ebtu
H
t Wt

BLMS1b Wt+1 =Wt + � ebtu
H
t

�
I� � ebtu
H
t

��1
Wt

BLMS2a Wt+1 =

1
1��

�
I� �

1��+�uHt ut
ytu
H
t

�
Wt

BLMS2b Wt+1 =
�
(1� �)I+ �ytu
H
t

��1
Wt

BLMS3 Wt+1 =Wt + � ebtx
H
t

BLMS4 Wt+1 =Wt + �
�
W�H
t � ytxHt

�

Table E.11: Update equations forblind source separation. (ebt , ut � yt)
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Algorithm Update equations

BRLS1a �t =

1� �

�+ (1� �)u�t ^r
�1
sst�1ut

wt+1 = wt + �t ebtu
�
t ^r

�1
sst�1
wt

BRLS1b �t =

1� �

�+ (1� �)u�t ^r
�1
ss ut

wt+1 = wt + �t (1� ytu
�
t ) ^r

�1
ss wt

BRLS1c �t =

1� �

�+ (1� �)u�tut

wt+1 = wt + �t (1� ytu
�
t )wt

BRLS2 ��t =

1� �

�+ (1� �)x�t ^r
�1
xxt�1xt

wt+1 = wt + ��t ebtx
�
t ^r

�1
xxt�1
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�
^r�1xxt�1 � ��t^r
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xxt�1
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�
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BLMS1a wt+1 = wt +

�

1�� u�t ebt
ebtu
�
twt

BLMS1b wt+1 = wt + � ebtu
�
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�
t ]
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wt

BLMS2a wt+1 =
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1��

�
1� �

1��+�u�t ut
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�
t

�
wt

BLMS2b wt+1 = [1� �+ �ytu
�
t ]

�1
wt

BLMS3 wt+1 = wt + � ebtx
�
t

BLMS4 wt+1 = wt + �
�
w��t � ytx
�
t

�

Table E.12: Update equations forAGC. (ebt , ut � yt)
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BRLS1a ��k = (1� �)
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k

�

Table E.13: Update equations forsingle-channel blind deconvolution. (�Ebk
, �Uk � �Yk)
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Appendix F

Implementation of a
single-channel blind
deconvolution algorithm

A frequency-domain blind deconvolution algorithm was presented recently by
Douglas and Kung in [35]. In this Appendix we present an alternative imple-
mentation in MATLAB of a single-channel frequency-domain blind deconvolu-
tion algorithm as described in Section 6.8.2. Several update equations can be
chosen inFDBDeconv.m , such as the natural gradient algorithm, the EASI al-
gorithm, or the Infomax algorithm. The algorithm can handle complex-valued
signals and coefficients. Depending on the choice of the nonlinearityg (:), the
source signal can be either sub-Gaussian or super-Gaussian. As an example,
the non-causal filter and update equations of the natural gradient learning algo-
rithm in the time domain at blockk are [5,6]:

ut =
XNw

n=�Nw

wn;k xt�n (F.1)

vt =
XNw

n=�Nw

w��n;k ut�n (F.2)

wn;k+1 = wn;k +

�

2Ty + 1
XTy

t=�Ty

wn;k � g(ut) v
�
t�n . (F.3)
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The constraints of the algorithm to avoid boundary or circular wrap-around
effects of the convolutions areTv � Ty +Nw, Tu � Tv +Nw, Tx � Tu +Nw,
andC � 2Tx + 1. The algorithm can be made causal by delaying the filtering
and update.

F.1 FDBDeconv.m

%FDBDeconv Frequency-domain blind deconvolution.
%
% Marcel Joho, 24.11.2000, (joho@isi.ee.ethz.ch)
%

clear
%%% parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C=512; Nw=50; Tx=250; iter=500; plot_isi=20;
Tu=Tx-Nw; Ty=Tx-3*Nw; L=2*Tu+1; L2=2*Ty+1;

%%% initial conditions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
len_s=iter*L+L;
x=zeros(C,1); u=x; y=u; u_out=zeros(L*iter,1);

Unit=fft([1;zeros(C-1,1)],C); W=Unit;

%%% a(z) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a=[ -1-4i 1-5i -11-2i -17-11i -1+20i]/10; % a(z)

Na=length(a); a=a(:)/sqrt(sum(a.*conj(a)));
a=[a;zeros(C-Na,1)]; A=fft(a,C);

%%% projection matrices %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Ng=Na+Nw-1;
gg=[(C-Ng+1:C) (1:Ng+1)]’;
ww=[(C-Nw+1:C) (1:Nw+1)]’; Pw=zeros(C,1); Pw(ww)=1;
xx=[(C-Tx+1:C) (1:Tx+1)]’;
uu=[(C-Tu+1:C) (1:Tu+1)]’; Pu=zeros(C,1); Pu(uu)=1;
yy=[(C-Ty+1:C) (1:Ty+1)]’; Py=zeros(C,1); Py(yy)=1;

%%% optimal deconvolution filter w(z) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
W_opt=1./A; w_opt=ifft(W_opt);
figure(1); plot((-Nw:Nw),[real(w_opt(ww)) imag(w_opt(ww))]);
ylabel(’w_{opt}(z)’); xlabel(’tap n’); drawnow ; pause(1);

%%% source signal %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%s=randn(len_s,2);s=sign(s).*s.ˆ2;s_seq=s*[1;i]/sqrt(6); % super-G
s_seq=(sign(randn(len_s,1))+i*sign(randn(len_s,1)))/sqrt(2);% sub-G

n_seq=0.032*(randn(len_s,1) + i*randn(len_s,1)) / sqrt(2);
x_seq=filter(a(1:Na),[1],s_seq) + n_seq;
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%%% algorithm %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for k = 1:iter

t=k*L; k

x(xx)=x_seq(t-Tx:t+Tx); X=fft(x);
U=W.*X; u=Pu.*ifft(U); u_out((k-1)*L+1:k*L) = u(uu);

%%% nonlinearity y=g(u) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ur=real(u); ui=imag(u);

% y=sign(ur) + i*sign(ui); % super-G (re/im)
% y=sign(u); % super-G (abs)
% y=ur.*abs(ur).ˆ2 + i*ui.*abs(ui).ˆ2; % sub-G (re/im)

y=u.*abs(u).ˆ2; % sub-G (abs)

eb=Pu.*(u-y); Eb=fft(eb); % blind error
y=Py.*y; Y=fft(y);

%%% update equations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% EASI

% W = W + 0.05/L2 * (L2*Unit-U.*conj(U)+U.*conj(Y)-Y.*conj(U)).*W;
W = W + 0.05 * (Unit - Y.*conj(U)/L2).*W; % nat.grad.I

% W = W + 0.05 * (W - Y.*conj(U).*W/L2); % nat.grad.II
% W = W + 0.05/L2 * (L2*conj(W).ˆ(-1) - Y.*conj(X)); % Infomax

% mu = 0.3/L; mu_2 = mu./(Unit-mu*conj(U).*Eb); % BLMS-1Wx
% W = W + mu_2.*Eb.*conj(U).*W; % BLMS-1Wx
% W = W + 0.3/L*Eb.*conj(U).*W; % BLMS-1Wx-c
% mu = 0.05; mu_2 = mu./((1-mu)*Unit+mu/L*conj(U).*U); % BLMS-2Wx-a
% W = 1/(1-mu) * (Unit - mu_2/L2.*Y.*conj(U)).*W; % BLMS-2Wx-a
% mu = 0.05; W = 1./((1-mu)*Unit + mu/L*Y.*conj(U)).*W; % BLMS-2Wx-b
% W = W + 0.05/L * Eb.*conj(X); % BLMS-3Ws
% W = W + 0.05/L2 * (L2*conj(W).ˆ(-1) - Y.*conj(X)); % BLMS-4Ws

%%% filter projection operation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
w=Pw.*ifft(W); W=fft(w);

%%% performance %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
G=W.*A; g=ifft(G);
Jisi(k)=sum(g.*conj(g))/max(g.*conj(g))-1;

%%% plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if rem(k,plot_isi)==0,

figure(1); plot(10*log10(Jisi));
ylabel(’J_{ISI} [dB]’);xlabel(’k’)

figure(2); plot((-Nw:Nw),[real(w(ww)) imag(w(ww))]);
ylabel(’w(z)’);xlabel(’tap n’)

figure(3); plot((-Ng:Ng),[real(g(gg)) imag(g(gg))]);
ylabel(’g(z)’);xlabel(’tap n’)

figure(4); plot(real(u(uu)),imag(u(uu)),’.’);
drawnow

end
end
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Figure F.1: Block diagram of the frequency-domain realization using the nat-
ural gradient learning algorithm.
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Figure F.2: Performance curve and constellation diagram of the natural gra-
dient learning algorithm with a QPSK source signal andg(u) =

ujuj2.
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Figure F.3: Performance curve and constellation diagram of the natural gra-
dient learning algorithm with a QPSK source signal andg(ure +

juim) = urejurej2 + juimjuimj2.



List of Abbreviations

AGC Automatic gain control

BD Blind deconvolution

BIBO Bounded input – bounded output

BLMS Blind LMS

BRLS Blind RLS

BSS Blind source separation

CLT Central limit theorem

CMA Constant modulus algorithm

DFT Discrete Fourier transform

ETH Eidgenössische Technische Hochschule
(Swiss Federal Institute of Technology)

FDAF Frequency-domain adaptive filter

FDLMS Frequency-domain LMS

FFT Fast Fourier transform

FIR Finite impulse response

FLMS Fast LMS

HOS Higher-order statistics

ICA Independent component analysis

ICI Interchannel interference

IDFT Inverse discrete Fourier transform

iff if and only if

IFFT Inverse fast Fourier transform

247



248 List of Abbreviations

iid independent identical distributed

IIR Infinite impulse response

ISI Intersymbol interference,
Signal and Information Processing Laboratory

LMS Least-mean square

MAP Maximuma posteriori

MCBD Multichannel blind deconvolution

MIL Matrix-inversion lemma (A.5)

MIMO Multiple input – multiple output

ML Maximum likelihood

MMSE Minimum mean-square error

MSE Mean-squared error

NLMS Normalized LMS

OLA Overlap add

OLS Overlap save

PCA Principal component analysis

pdf probability density function

QAM Quadrature amplitude modulation

QPSK Quaternary phase shift keying

RLS Recursive least squares

SINR Signal-to-interference-and-noise ratio

SIR Signal-to-interference ratio

SISO Single input – single output

SNR Signal-to-noise ratio

SOS Second-order statistics

SVD Singular value decomposition

WHE Wiener-Hopf equation

ZF Zero forcing

List of Symbols

Scalars

� Kurtosis (6.9)

�; �m Forgetting factor, eigenvalue

�; ~� Stepsize

! Radian frequency (2�f )

�; �1 Singular value, largest singular value

�2n Power of sensor noise

�2s Power of source signals

C DFT/FFT size

f Frequency [Hz]
fs Sampling frequency [Hz]

j

p�1

JICI Interchannel interference cost function (6.130), (6.132)

JISI Intersymbol interference cost function (6.131), (6.133)

JMC-ISI Multichannel intersymbol interference cost function (6.134)

JMSE-s Cost function for inverse modeling (2.57), (4.210), (5.114)

JMSE-x Cost function for system identification (2.4), (4.209), (5.113)

k Iteration, block indext , kL

L Block length

M No. of sensors

Ms No. of source signals
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N Filter length

t Time sample index, discrete timetc= t Ts

tc Continuous time

Ts Sampling period

z z-transform operator

Vectors and Matrices

n Sensor-noise vector

s Source-signal vector

u De-mixing system output vector

x Sensor-signal vector

^x Estimation ofx

y g(u)

A;A(z) Mixing system

H;H(z) Estimation of mixing systemA

HMMSE-s , [WMMSE-s]�1

HMMSE-x (2.8)

W;W(z) De-mixing system, estimation ofA�1

WMMSE-s (2.61)

WMMSE-x , [HMMSE-x]�1

0 Vector or matrix containing zeros

1 Vector or matrix containing ones

F DFT matrix (3.1)

I Identity matrix

J Exchange matrix (3.9)

~J Circulant permutation matrix (3.26)

Jc Circulant-time-reversal matrix (3.6)

P Projection matrix

~P Projection matrix (3.12)

T Block DFT matrix (3.7)

List of Symbols 251

Mathematical Operators

�A Diagonal matrix (Section 3.1.4)

A Block diagonal matrix (Section 3.1.7)

~A Circulant matrix (Section 3.1.5)eA Block circulant matrix (Section 3.1.8)

aM Vector length

AM�N Matrix dimensions

[a]m mth vector element (am)

[A]mn mnth matrix element (amn)

[amn] Define a matrixA by it’s mnth element

A(m;n) Deletemth row andnth column of a matrix

A� Complex conjugation[a�mn]

AT Transposition[anm]

AH Hermitian transposition, conjugate transposition[a�nm]

A�1 Matrix inverse (A.13)

A# Moore-Penrose pseudoinverse (A.20)

A((�1)) Elementwise inversion of a matrix[a�1mn]

C(a) Generate circulant matrix (3.18)

C�1(~A) First column vector of a circulan matrix~A (3.19)
� fAg Matrix condition number,� fAg , kAk2=kA�1k2

adj (A) Adjoint of a matrix (A.14)

ddiag (A) Set off-diagonal elements ofA to zero (B.1)

det (A) Determinant of a matrix

diag (A) Vector with diagonal elements of matrix

diag [a] Generate diagonal matrix

o� (A) Set diagonal elements ofA to zero (B.1)

rank (A) Rank of a matrix (Appendix A.7)

tr (A) Trace of a matrix (Appendix B)

max(:) Maximum

min(:) Minimum
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d:e Round to next higher integer

b:c Round to next lower integer

< : >a;b Generalized remainder (D.2)

< : >C Symmetric remainder (D.4)

sign (:) Sign funktion

j:j Absolute value

h:;:i Inner product, scalar product (C.1)

h:;:iF Inner product of polynomial matrices (C.4), (C.7), (C.10)

k:k Euklidian norm (vector),k:k2=�1 (matrix)

k:kp p-norm

k:kF Frobenius norm (C.3)

k:kF Frobenius norm of polynomial matrices (C.18), (C.20), (C.21),
(C.22)

� Linear convolution (Section 3.2.1, 3.5.1)

~ Circular convolution (Section 3.2.2, 3.5.1)


 Kronecker product [15,46,101]

� Direct sum [15]

� Elementwise matrix multiplication (Hadamard product)

Pa;b (a(z)) Polynomial projection operator (D.10)

PC (a(z)) Symmetric polynomial projection operator (D.11)

~Pa;b (a(z)) Circular polynomial projection operator (D.69)

~PC (a(z)) Symmetric circular polynomial projection operator (D.70)

D (:k:) Kullback-Leibler divergence (A.3)

E f:g Expectation

Æ(:) Dirac impulse

Æ[:] Kronecker delta

ps(:) Probability density function (pdf) ofs
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