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Abstract

In many situations related to acoustics and data communications we are con-
fronted with multiple signals received from a multipath mixture, e.g., the fa-
mous cocktail-party problem. A multipath mixture can be described by a mix-
ing matrix, whose elements are the individual transfer functions between a
source and a sensor. The mixing matrix is usually unknown, and so are some-
times also the source signals.

Depending on the application, different parameters are of interest: the mix-
ing matrix for system identification, the inverse mixing matrix for inverse mod-
eling, or the source signals for system equalization. This thesis gives a sys-
tematic approach to the aforementioned problems in a multipath mixing envi-
ronment. To this end, we investigate the multichannel-mixing problem and the
single-channel multipath problem separately.

Based on a mean-squared-error (MSE) cost function, several stochastic-
gradient update equations, which are related to the least-mean-square (LMS)
and the recursive least-squares (RLS) algorithm, are derived for the instanta-
neous mixing case. Thereby the matrix-inversion lemma has shown to be a
very powerful tool to transform an algorithm which estimates the mixing ma-
trix (system identification) into an algorithm which estimates the inverse mix-
ing matrix (inverse modeling).

With the help of circulant matrices, the adaptive algorithms for the mul-
tichannel instantaneous mixing case are transformed to cope with the single-
channel multipath case. Block processing techniques are used, allowing effi-
cient implementation of the filtering and adaptation in the frequency domain.
The Fast Fourier Transform (FFT) plays a crucial role, owing to its close rela-
tionship to circulant matrices.
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We extend the algorithms to operate as multichannel adaptive filters, using
the fact that a multipath mixture is the combination of instantaneous mixing
and single-channel multipath convolution.

In addition, we investigate the situation where not only the multipath-mixing
system, but also the source signals are unknown. This situation is referred to as
blind identification. By exchanging the non-blind error criterion with a blind
error criterion, we derive new algorithms for blind identification (blind source
separation, single-channel and multichannel blind deconvolution). The same
technique provides an alternative derivation of the well-known natural-gradient
learning algorithm for blind source separation, revealing new insight.

Throughoutthe thesis, many simulation examples illustrate the performance
behavior of the different adaptive algorithms.

Keywords. Multichannel adaptive signal processing, multichannel adaptive
filtering, system identification, inverse modeling, system/channel equalization,
blind identification, blind source separation, blind deconvolution, multichannel
blind deconvolution, acoustical signal processing, multipath mixture.

Kurzfassung

In der Akustik und in der Datenkommunikation hat man es oft mit echobe-
hafteten und vermischten Signalen zu tun, zum Beispiel mehrere Sprecher in
einem halligen Raum oder Mehrwegausbreitung in Mobilfuniit@n.” Ein
solches mehrkanaligdsbertragungssystem kann mit einer Mischmatrix be-
schrieben werden, deren Elementedieertragung zwischen den Sendern und
den Empéingern beschreiben, zum Beispiel mittels einer Impulsantwort. Diese
mehrkanaligeUbertragungsmatrix ist normalerweise nicht bekannt. In eini-
gen Anwendungen sind sogar die ausgesendeten Signale (Quellensignale) un-
bekannt. Ablhgig von der Anwendung interessiert man siohdié Sclatzung

von verschiedenen Parametern: In der Systemidentifikatiodi€ Sclatzung
derUbertragungsmatrix oder deren Inverse, bei einer Kanalentzeraurtief”
Schatzung deubertragenen Datensignale.

Die vorliegende Dissertation analysiert die obigen Problemstellungen in ei-
ner systematischen Weise. Dazu wird das allgemeine Problem auf zwei unter-
schiedliche Arten vereinfacht, die zuerst getrennt untersucht werden. Es sind
dies eine einfache Signalmischung und ein einfacher Kanal mit Mehrwegaus-
breitung.

Basierend auf einem quadratischen Fehlerkriterium leiten wir verschiedene
stochastische Gradientenmethoden her, um eine unbekannte Mischmatrix zu
schatzen. Diese Methoden weisen eine grosse Verwandtschaft mit dem LMS-
(least-mean-squajyeind dem RLS-recursive-least-squargélgorithmus auf.

Das Matrix-Inversions-Lemma hat sich dabei als sehzliches Hilfsmittel
erwiesen, um einen Sat?algorithmusui die Mischmatrix in einen effizienten
Schatzalgorithmusdi die inverse Mischmatrix umzuwandeln.

Adaptive Filteralgorithmenuf’ die einkanalige Kanalseltvung und Kana-

Vii
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legalisation werden hergeleitet. Es wird eine blockweise Verarbeitung der Ein-
gangsdaten verwendet, welche eine effiziente Implementation der Filterung und
Adaption im Frequenzbereich erlaubt. Dabei wird die enge Verwandtschaft
zwischen der schnellen Fourier Transformation (FFT) und zinan Matrizen
ausgenutzt.

Die Algorithmen werdendi eine mehrkanalige adaptive Filterung erwei-
tert, indem die Methoderuf'die mehrkanalige Mischung mit denjenigen der
einkanaligen Filterung vereinigt werden.

Zusatzlich wird der Fall der blinden Systemidentifikation untersucht, bei
der weder di&Jbertragungsmatrix noch die Quellensignale bekannt sind. Durch
Auswechseln des Fehlerkriteriums lassen sich Algorithrenli€ mehrkana-
lige adaptive Filterung in solche umwandeln, die sichdie blinde Quellen-
separation und &kfaltung eignen. Mit dem selben Vorgehexsdt sich der
Algorithmus des nairlichen Gradienten, der in der blinden Quellenseparation
weit verbreitet ist, auf eine neue Weise herleiten.

Das Adaptionsverhalten der verschiedenen Algorithmen wird mittels Simu-
lationsbeispielen aufgezeigt.

Stichworte. Mehrkanalige adaptive Signalverarbeitung, Systemidentifikati-
on, Kanalentzerrung, blinde Quellenseparation, blinde Kanalentzerrung, Si-
gnalverarbeitung von akustischen Signalen, Mehrwegausbreitung.
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Chapter 1

Introduction

1.1 Preface

Multichannel signal processing is a challenging field in data communications,
acoustics, geophysics, biomedical applications, data fusion, fault-detecting sys-
tems, and many other application areas. Since the early sixties, when the
Kalman filter was invented and Widroet al.introduced the least-mean-square
(LMS) algorithm, a tremendous growth of applications using adaptive signal
processing in various fields was observed. One of the first to apply the LMS
algorithm in data communication for channel equalization was Lucky [76].

Later on, blind algorithms, which do not have access to any reference sig-
nal, came up in data communications for channel equalization [11, 12,41, 91].
Blind deconvolution techniques were also used in geophysical applications
[26,42,110]. In geophysics the terbtind deconvolutioris more common,
as the interest mainly lies in obtaining a model of the system, whereas in data
communications the terrblind equalizationis more commonly used, as the
main interest lies in retrieving the data.

Algorithms forblind source separatioar independent component analysis
(ICA) [21] came later. Jutten, éfault, and Comon [22, 64] were among the
first to describe the problem. Early work was also done by Shalvi and Wein-
stein [95] and Weinsteirt al.in [112]. Later on, Bell and Sejnowski came up
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with the Infomaxalgorithm [7]. The introduction of theatural gradientby
Amari et al. [4] or therelative gradientoy Cardoso and Laheld [17] provided

a new class of algorithms, which have the so-cafigdivariant propertyi.e.,

the convergence rate is independent of the conditioning of the unknown mixing
system. The systematic extension of most known blind source separation algo-
rithms to theimultichannel blind deconvolutiarounterpart was done by Lam-
bert [69] using FIR-matrix algebra. Douglas and Haykin showed in [33,34] the
structural relationship between blind deconvolution and blind source separation
under the circulant mixing condition, which is also a subject of this thesis.

Inthe last few years, blind algorithms have attracted many researchersin the
field of adaptive signal processing, neural networks, and higher-order statistics.

Applications in acoustics Main applications in acoustics are: Man-machine
interface [66], acoustic noise canceler, adaptive microphone arrays, echo can-
cellation in hands-free telephone and hearing aids, multichannel echo cancel-
lation and speaker separation in teleconferencing, active noise control, dere-
verberation of acoustical signals, beam steering of loudspeaker arrays, head
related transfer functions (HRTF), crosstalk cancellation, removal of multipath
in sonar systems, and many others.

Applications in data communications Main applications in data communi-
cations are: Smart antennas or adaptive beamforming, single- and multichannel
equalization, multi-user separation (e.g. CDMA), adaptive line enhancement,
etc.

Further reading Textbooks which cover many aspects of single-channel and
multichannel adaptive signal processing are [20,44,51,58]. An overview of the
field of blind or unsupervised learningan be found in [3,16,52,53,72,83,90,
106].

1.2. Problem formulation 3

1.2 Problem formulation

1.2.1 Description of the unknown system

In the following, we restrict ourselves to linear systems and assume that the
unknown multiple-input multiple-output (MIMO) system can be described by a
matrix A (z), whose elements;;(z) contain the impulse response between the
jthiinput and the&th output in the two-sided-domain. s denotes the number

of system inputs and/ the number of system outputs. Thus, the x Mg
transfer matrix of the system is defined as

A(z) = ) Az = [ag(2)] (1.1)
s . i=1,....,.M
“l®)= 2t J=1,, My, (12

We assume that each system is stable),8; __|a;j»| < co. The left hand

side of (1.1) representspolynomial matrixor aLaurent-series matrixa ma-

trix whose elements are polynomials, power seried,aurent seriesand the

right hand side is referred to asvatrix polynomialbr amatrix Laurent series

(a polynomial or a Laurent series whose coefficients are matrices)P65jno-

mial vectorsandvector polynomialare defined accordingly. In fact, the formu-
lation in (1.1) describes a non-causal system. However, we will treat a causal
system as a special case of a non-causal systemAie),= > A,z ".

Aside from the non causality and the infinite extent of the impulse re-
sponses, the description (1.1) is common in the field of acoustics and com-
munications. In other applications which are related to control theory, usually
a state-space model is preferred, especially if a physical model based on differ-
ential equations is available [75].

1.2.2 Environment

The environment, which the syste(z) is embedded in, is shown in Fig. 1.1.
The generatonvolutive-mixing systemith additive noise is described in the
z-domain as

x(z) = A(2)s(z) + n(z). (1.3)
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n
s 71 4 =

Figure 1.1: Setup of the mixing system with additive noise.

We havells source signals, whose time series are represented by their two-
sidedz-transforms in vector form

&)= 3 st = [sml2)] (L.4)
t=—o0

Sm(z) = i Smaz " m=1,..., Ms. (1.5)
t=—00

Likewise, the time series of th&/ sensor signals are represented as

x(2) = Y xz7l = [z (2)] (1.6)
t=—00

Ty (2) = i Tz m=1,...,.M 1.7)
t=—o0

and the time series of the sensor noise as

)= 3 mat = [im(2)] (1.8)
t=—00

N, (2) = i N2 " m=1,...,M. (2.9)
t=—o0

Alternative description Equivalent ways to describe the noisy mixing pro-
cess are either by a convolutional sum

x¢ = (Axs), +ny (1.10)
o0
= > Argsitn (1.11)
k=—o0

or with help of the delay operatqr?, e.g.,q~%x; = z;_4 [44,75],
x: = A(q) sy +ng. (1.12)

1.2. Problem formulation 5

Assumptions In all cases, we assume that we have full access to the sensor
signals. The sensor noise is always unknown. Furthermore, in a system identi-
fication and inverse-modeling setup, we also have access to the source signals.
However, in a blind system-identification setup, we only know some statistical
properties of the source signals, e.g., non-Gaussianity, but not the source signals
themselves, therefore the terminoldgind. FurthermoreA. (z) is unknown.

Problem formulation Throughout this thesis, we aim at finding an estimate
A(z) or A=1(z) of the unknown systemA (z). We have access to the time
samples of sensors; and, in the non-blind case, also to the time samples of
the sources;.

1.2.3 Special cases

Depending orA (z), we can subdivide the general convolutive-mixing system
into several special cases:

1. Instantaneous mixing system

A(z)=A. (1.13)

2. Delayed instantaneous mixing system

A(z) =z A. (1.14)

3. Individually delayed source signals with instantaneous mixing

A(z) = AD(z) (1.15)
D(z) = [z %] (1.16)
or D(z) = diag [z*dl, . z*dMS] . (2.17)

4. Instantaneous mixing with individually delayed sensor signals

A(z) =D(z)A. (1.18)
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spatial extension

A

_—
temporal extensiojj ltemporal extension
_—

a(z) A(z)

spatial extension

Figure 1.2: Commutative diagram which reveals the relationship between con-
volution and mixing:a attenuationg(z) convolution,A instanta-
neous mixing, and\ (z) convolutive mixing.

5. Delay-and-sum systém
A(z)=[z"%]D (1.19)
with D = diag[dy,...,dm,] (1.20)
6. Single-channel convolution
A(z) =a(z). (1.21)
7. Signal attenuation

A(2) =a. (1.22)

Fig. 1.2 illustrates the relationship between single-channel and multichannel

convolution on the one side, and instantaneous and convolutive mixing on the

other side.
Furthermore, depending on the dimensionAafz) *Ms, we distinguish
between the following cases for inverse modeling and blind identification:

o fully determined systefd/ = Ms): We have an equal number of sources
and sensors antkt A (z) has no roots on the unit circle. This means that
A (/%) is of full rank for -7 < w < 7.

¢ overdetermined syste(d > Ms): More sensors than sources.

¢ underdetermined systef/ < Ms): Fewer sensors than sources.

1This model is often used in beamforming applications, if the sensors have equal gain and the

sources are located in the far field. Tjte column ofA.(z) is just thesteering vectofor the jth
source.

1.3. System identification 7

1.3 System identification

In system identificatiowe wish to directly find an estimat(z) = A(z) of
the unknown system

H(z)= ) Hpz™" = [hy(2)] (1.23)
P = 3 s D (1.24)
such that
x(z) = H(z)s(z) (1.25)
becomes an estimate »fz). The estimation or prediction error is then
ex(2) = x(2) — x(2) (1.26)
=[A(z) — H(2)]s(z) + n(z). (1.27)
We aim at finding &1(z) such as to minimize
llex(2)I1% = I[A(2) — H(2)] () + n(2) I3 (1.28)
= [[[A(z) = H()]s(2) Il + In(2) I3 (1.29)
= Mso? ||A(2) —H(2)||% + M o?. (1.30)

In these steps, we have assumed that the sensor noise and the source signals

are mutually uncorrelated, i.€s(z),n(z)) » = 0, that all source signals have
equal powers2, and that all noise signals have equal powgr The inner
product(.,.) » and the nornj|.|| » are defined in Section C.2 and Section C.3,
respectively. As seen from (1.30), minimizifiex(z) ||2f is equal to minimizing
[|A(z) — H(z)||2f, as we have no influence o1i. Therefore, in an iterative or
adaptive algorithm, we use the error sigeg| to adaptH(z), as depicted in
Fig. 1.3.

1.4 Inverse modeling

In inverse modelingve wish to find an estimate of the inverse syst&Wi(z) =
A~1(z), or find an estimate of the pseudoinverse, defined in Section A.8, of
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Figure 1.3: System identification. The prediction erigris used for the adap-
tation.

the unknown system, i.8V (z) = A#(z)

W(z)= > W,z = [wy(2)] (1.31)
w,vj(z) = i ’ll)ijmzin Z,] = ]., . M (132)

such that theglobal systenmatrix

G(2) 2 W(2)A(2) (1.33)
becomes close to the unity matiixand
u(z) = W(2)A(z)s(z) = G(z)s(z) (1.34)
becomes an estimate ©fz). Thus, we build theequalization erroras
es(z) £ s(2) —u(z) (1.35)
=[I-W(2)A(z)]s(z) — W(z)n(z) (1.36)
=[I-G(2)]s(z) — W(z)n(z) (1.37)

which is taken for the adaptation 8 (z), as depicted in Fig. 1.4. The corre-
sponding cost function is

lles(2)I7 = I[L =~ W(2)A(2)] s(2) — W (2)n(=)||- (1.38)
= [T - W(2)A)]s(2)l[5 + [W(2)n(2)|l5> (1.39)
= Mo |[1- WA + Mo [W(2)[l5- . (L.40)

1.4. Inverse modeling 9

Figure 1.4: Inverse modeling or channel equalization. The equalization error
es is used for the adaptation.

Again, we have assumed that the sensor noise and the source signals are mutu-
ally uncorrelated, i.e¢s(z),n(z)) » = 0, all source signals have equal power
o2, and all noise signals have equal powgr

Depending on the application, in fact, we can choose between two differ-
ent cost functions to minimize. We can either search for the minimum mean-
squared error (MMSE) solutioW""5(z), which minimizes (1.40), or search
for the so-called zero-forcing (ZF) solutidV="(z), which minimizes only the
first term of (1.40), nameljj I — W(z)A(z)||2f. In the noiseless case, we have
WWSE(z) = W#(z). In data communications, the MMSE solution is usually
preferred, as one is rather interested in estimating the data than obtaining an
exact model of the inverse channel, whereas in other applications, e.g. geo-
physical prospecting, one is more interested in an exact model or inverse model
of the channel.

Phase property ofA(z) We introduce the following definitions for alf x
M polynomial matrixA(z):

e A(z) is calledminimum phas# all zeros ofdet A(z) lie inside the unit
circle.

e A(z) is calledmaximum phasé all zeros ofdet A(z) lie outside the
unit circle.

e A(z) is calledmixed phaséf the zeros ofdet A (z) lie on both sides of
the unit circle.
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The case where the system is either maximum or mixed phase is referred to as
non-minimum phaséVe exclude the case where zeros lie on the unit circle, as
such a system is not invertible over the whole frequency range: Q < 7.

Inversion of a polynomial matrix ~ A fundamental problem arises if we wish
to invert a nonminimum-phase system. Since the elemen#g(ef are poly-
nomials, the elements a€~*(z) are rational polynomials and therefore have
poles, see (A.15). Since we approximate the elements df(z) with all-zero
filtersw;;(z), we expand the poles @A ~*(z)];; into an infinite-length impulse
response.

A pole outside the unit circle can either be expanded such that the resulting
impulse response becomes causal but unstable, or non-causal butStabile.
ity can be exchanged with non-causalitye are interested in a stable inverse,
even if we end up with a non-causal systélz). As a consequence, K(z)
in nonminimum phase, we end up with a non-calfét).

In a practical application, where the number of coefficients is limited any-
way, we can introduce a delay into the system such that the non-causal part
becomes causal again. Hence, we replace (1.35) by

es(z) = 2z %s(z) — u(z) (1.41)
and in analogy to (1.40), derive the new MSE cost function

— 2
les(2)I% = M of || 71 - W(2)A(2)|[ - + Moy [W(2)[l5 . (1.42)

Consequently, the zero-forcing solution then becoMég) = 2~ A~1(z)
or W(z) = =% A#(z), depending on the dimension Af(z).

1.5 Blind identification

In the so-called blind identification problem, we have an inverse-modeling
problem, except that we have no access to the source sigfzgls The al-
gorithm isblind to the source signals. We distinguish between the following
blind problems:

1.5. Blind identification 11

¢ Blind source separatio(BSS)
The unknown system is described by a mixing matkixwhich is an
ordinary matrix with scalar elements.

e Blind deconvolutior{BD)
The unknown system is described by a single polynoma), repre-
senting thez-transformed impulse responée,, } .

e Multichannel blind deconvolutiofMCBD)
The unknown system is described by a polynomial mai{x). This is
the combination of blind source separation and blind deconvolution.

e Automatic gain contro{AGC)
AGC belongs to the degenerated case of BSS and BD, where the un-
known system is described by a single scalafor a complex gaim
and a complex source signal, under certain conditions phase corrections
up to a multiple ofr/2 can be achieved. We then have automatic gain
andphase control.

The relationship between the different blind problemsis depicted in Fig. 1.5.

Since we have no access to the source sigsials we cannot build the
error signaks. Hence, we have to estimate eitlér) or e; somehow, or find
an alternative error criterion. A common choice for a blind error signalis [9,71]

ep(z) =u(z) —y(z) (1.43)

spatial extension
_—

AGC BSS

temporal extensioﬂj ltemporal extension

MCBD

_—
spatial extension

Figure 1.5: Commutative diagram to reveal the relationship between the dif-
ferent blind problems.
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Figure 1.6: Blind identification. The blind errosy, is used for the adaptation.

with
y(z) = ti yez ' = [ym(2)] (1.44)
ym(2) = i Ymez " m=1,...,Ms (1.45)
Ymi = ;jn_(jjm,t) : (1.46)

ym,¢ IS @ nonlinear function of the output signal, ;. The choice of the mem-
oryless nonlinearity,, (.), also known as thBussgang nonlinearitydepends
onpg,, (sm,), the pdf of the unknown source signg),. If the pdfps(s) of a
source signal is known, trezore functiorj16], defined as

9 uPs(u)

g(u) - au lnps(u) - pS(U)
is usually the preferred choice, justified from maximume-likelihood estimation
theory. However, the exact choice of the nonlinearity is not very crucial for
the performance of most blind algorithms. In fact, the knowledge whether the
pdf of a source signal is super-Gaussian (more peaky than a Gaussian pdf) or
sub-Gaussian (flatter than a Gaussian pdf) is usually sufficient for the choice of
the nonlinearity.

(1.47)

1.6 Semi-blind identification

In a semi-blind setup we refer to the situation where some parts of the source
signals are known. We distinguish between spatial and temporal semi-blind
problems:

1.6. Semi-blind identification 13

Sr1 Sr2
!J_\ h i !J_\

4w Y
X

Sh1 i ®Sb3
Sh2

Figure 1.7: Teleconferencing setup. The five sensor signal$o x5 capture
a mixture of several audio signals stemming from three speakers
(unknown source signals,; to sp3), and two loudspeaker signals
(accessible source signalg ands,). The objective is to retrieve
the unknown source signads,,,. If a blind-only algorithm is used,
all five sensor signals are required, as a blind algorithm does not
distinguish between known and unknown source signals. A semi-
blind algorithm which makes use of the known source signals re-
quires only three sensors.

e Some of the source signals are known. This situation appears e.g. in a
teleconferencing setup, see Fig. 1.7. We have the situation, where some
of the source signals are accessible, and therefore do not have to be sep-
arated from the mixture. The known source signals can either be directly
incorporated in the update equatiorvatual sensorg61], or, in an echo-
canceler preprocessing step, be subtracted from the sensor signals [59].
Moreover, every known source signal reduces the number of required
sensors for the separation by one. Other algorithms which cope with this
situation are given in [92—-94].

e In communications, training sequences are usually embedded in the data
stream to allow a training-based equalization of the channel. During
the actual data transmission, the adaptive channel equalizer operates in a
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fully blind or decision-directed mode, depending on the current quality
of the equalization [45,108,111].

1.7 Overview

In this thesis we derive several algorithms for single-channel and multichannel
adaptive filtering. First we analyze the non-blind case, where we derive up-
date rules for the system-identification and for the inverse-modeling problem.
Afterwards, based upon the concepts of the non-blind case, we modify the al-
gorithms to be applicable to a blind environment. The thesis is structured as
follows:

chapter 1 In this chapter the general problem description is introduced in a
mathematical context. Furthermore, some special cases of the general
problem are given.

chapter 2 In this chapter we deal with the instantaneous mixing problem.
Based on a quadratic error criterion, several gradient and Quasi-Newton-
type algorithms are derived for multichannel identification and multi-
channel equalization, which are related to LMS and RLS algorithms.

chapter 3 In this chapter the basic tools from Linear Algebra which build the
basis for deriving efficient blind and non-blind adaptive algorithms are
introduced. The Fourier matrix, circulant matrices, and block circulant
matrices play a major role in transforming the filtering and the update
of the coefficients into the frequency domain. Moreover, the isomorphic
mapping between convolution, multiplication of polynomials, and multi-
plication of circulant matrices are shown, which build the key concept for
the extension of the instantaneous mixing case to the convolutive mixing
case.

chapter 4 Here we consider the single-channel system-identification and
inverse-modeling problem, where the unknown system consists of a sin-
gle filter. With the help of the mathematical tools described in Chap-
ter 3, we transform the update rules from Chapter 2 to work with the
convolutive-mixing case. Furthermore, efficient implementations of the
algorithms in the frequency domain are given.

1.7. Overview 15

chapter 5 In this chapter we focus on algorithms for multichannel system iden-
tification and inverse modeling. We combine the concepts of the multi-
channel instantaneous-mixing problem from Chapter 2 with the concepts
of the single-channel filtering problem from Chapter 4, and derive algo-
rithms for the multichannel convolutive-mixing problem.

chapter 6 Based on the methods for the described non-blind problems and by
exchanging the non-blind error criterion by a blind error criterion, we can
easily obtain algorithms which are suitable for blind source separation
(BSS), blind deconvolution (BD), and multichannel blind deconvolution
(MCBD).

appendix 1 Summary of some useful mathematical tools.
appendix 2 Properties of the trace operation.
appendix 3 Extension of the Frobenius norm to polynomial matrices.

appendix 4 The definitions of the generalized remainder and the polynomial
projection operators are given, together with many of their properties.

appendix 5 Summary of update equations for system identification, inverse
modeling, and blind identification.

appendix 6 M\TLAB implementation of a single-channel blind deconvolution
algorithm in the frequency domain.



Chapter 2

System identification and
Inverse modeling of an
Instantaneous mixing system

In this chapter we derive several adaptive algorithms for system identification
and inverse modeling (inverse-system identification) of an instantaneous mix-
ing system. An instantaneous mixing system can be seen as a special case of
multichannel system identification or multichannel inverse modeling where the
unknown system has no dynamics (memoryless system), and can therefore be
described by an ordinary matrix, whose elements are scalars. The purpose is
hereby to gain a first insight into the behavior of a general multichannel algo-
rithm and its properties. Furthermore, as will be seen in Chapter 6, the analysis
and understanding afon-blindalgorithms helps in the developmentladfnd
algorithms and in the improvement of their convergence rate.

In this chapter we derive two Wiener solutions based on different error cri-
teria. From the Wiener solutions, we develop several LMS and RLS update
equations, which are summarized in Table E.3 and E.7 in Appendix E. The
matrix-inversion lemma, which is given in Appendix A.3, plays a key role in
the transformation of an algorithm which is applicable for system identification
into one for inverse modeling, and vice versa. As a result, we will see that many
known blind algorithms also have non-blind counterparts.

17
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2.1 Unknown mixing system

Since we consider an instantaneous (memoryless) mixing system, we can de-
scribe the unknown system by a mixing matrix with scalar elements, also shown
inFig. 1.1

Xt = ASt + ny. (21)

The mixing matrixA and the noise vectat; are unknown, the signal vectors

s; andx; are known fort > 0. The task is now to find an estimate Af,

i.e.H = A, or an estimate oA~!, i.e. W = A~!, based on the knowledge

of the system inpus; and system output;. The first task is referred to as
system identificatioand the second one awerse modelingr inverse-system
identification As we will see in this chapter, the algorithms for these tasks can
have quite a different performance behavior, although they actually pursue the
same objective.

2.2 System identification

nt
S
! A & B
+
€xt -
H, X
/
Figure 2.1: System identification. The error signg| is used for the adapta-

tion.

In system identificatiowe try to find a matrixH which is “close” to the true
systemA, see Fig. 2.1. “Closeness” can be measured in different ways. For
example it could be defined HyA — H||r. However, by assumption there is
no access to the true mattl, therefore closeness is usually defined in system
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identification as a function of the prediction or estimation error
ex =Xt — Xy (2.2)
where
x: = Hysy (2.3)

is the estimation of the output of the unknown mixing syst&hcan be either
estimated by a batch algorithm, or by an online learning algorithm. A batch
algorithm uses at discrete timeall the past input and output time samples for
the new estimat#l;,, whereas an online algorithm uses at titranly s;, x;,

and the current estimald, to evaluatd, ;.

2.2.1 Wiener solutionH""*=

We now wish to find the Wiener or minimum mean-squared error (MMSE)
solutionH"™*&* which minimizes the cost function

Jusex £ E {||ex|[3} = tr {Re,e, } (2.4)

where
Ree, 2 {exell } = E{(x— %) (x - %"} (2.5)
= Rxx — HRex — RicHY + HRHY (2.6)

is the error covariance matriss £ E {ssf’}, Rsx £ E {sx}, Rys £
E{xs"}, andRxx = E {xx!’}. Towards this end, we build the gradient of
the cost function with respect to the matkk

VaJIusex = Vu tr {Rexex} = 2Ry + 2H R4 (2.7)

where we use®@y = 255, see [51] Eq. (B.18). By settingy Jusex equal
to 0 and solving forH, we finally obtain the MMSE or Wiener solution

H" = Ry R (2.8)

Alternatively, we can also derive the Wiener solution by usingdtbog-
onality principle! which says that the estimation error has to be orthogonal to

1Two random complex variableX andY with E {X} = E {Y'} = 0 are said to berthogo-
nalif E{XY*} =0.
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the input data

E {est} =F {st} — HE {ssH} (2.9)
=Ryxs — HRg;. (2.10)

By setting (2.10) equal t6 we obtain theNiener Hopf equatioWHE)
HRss = Rys . (2.11)

Solving forH also givesH"™s* given in (2.8).

2.2.2 Batch learning

Since we usually do not know the}rue covqriance matiRges and R, we
can replace them by their estimaf@ss andRgg, respectively. We can then
estimate the Wiener solution in (2.8) by

H=R,R_. (2.12)

In a batch processing, we use all available measurements of the system to esti-
mate the correlation matrices

T

R, = L thsfl (2.13)
T t=1
1 T

Res = 7 > sist (2.14)
t=1

The number of sampléE needs to be large enough such tRag has full rank
and is therefore invertible.

2.3 LMS=x

For the derivation of a stochastic learning algorithm we first start with the
method ofsteepest descemthere we iteratively updatél by following the
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negative gradient of the performance function

H, ., =H, — % Vi JMSEx (2.15)
=H; + p (Rxs — H; Res) (2.16)
=H; (I - pRss) + # Rxs (2.17)
=H; + 1t (Rxs — Ris) (2.18)

wherey is the step size of the algorithm, which is properly chosen such that
convergence is guaranteed, i.e.,

0<p< (2.19)

2
IRl

2.3.1 UpdatingH

LMS1-Hx Since the true correlation matricRss, Rss, andR g are usually
unknown, we have to estimate them. The simplest way to do this is to replace
them by theirinstantaneous estimates.g. Rxs = xs”. By doing so, we
derive astochastic gradient algorithm

Hy o =H, +p(x—x%x)s (2.20)

which we refer to as LMS1-Hx. We call it LMS, because the algorithm is
derived analogously to tHeast mean square algorithased in adaptive filter-

ing [100]. The index H denotes the variable which is adapted and x denotes
that the underlying cost function which is to be minimized\gg.x-

LMS2-Hx In case we know thaRss = I, which is often assumed in a blind
setup, we obtain from (2.16)

Ht+1 = Ht + 12 (XSH — Ht) (221)
= (1 — p) Hy + pxs? (2.22)

which we refer to as LMS2-HxR s was replaced by its instantaneous esti-
mate.
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2.3.2 UpdatingH !

Either algorithm, LMS1-Hx and LMS2-Hx, can be modified such as to update
the inverse o, i.e. W 2 H!, rather tharH itself. By doing so, we obtain
two new algorithms which can be used for inverse modeling.

LMSla-Wx Starting with (2.20) and applying the matrix-inversion lemma
with A’ = Hy, B’ = p(x — %), C' = 1, andD’ = s, we derive

Wit = [He] ' = [H; + p(x — %) s™] o (2.23)
=W, — uW; (x - %) [1+ ps? W, (x - &)]71 s"W,
=W;+p(s—u)[l—pus? (s— u)]71 sHW,. (2.24)

Recall thatH; = W;', W;x = uandW;x = H;'x = s. We refer to
this algorithm as LMS1a-Wx, which is, in fact, exactly the same algorithm as
LMS1-Hx, except thaH ! is updated instead df.

LMS1b-Wx Again, we start with (2.23) and applying the matrix-inversion
lemma withA’' = Hy, B’ = u (x — %) s, C' = I, andD’ = I, we derive

Wit = W, — pWy (x — %) s [T+ pW, (x — %) sH]_1 W,
=W;+pu(s—u)st? [I—,u(s—u)sH]_lwt. (2.25)

We refer to this algorithm as LMS1b-Wx, which is exactly the same algorithm
as LMS1-Hx, except thalH~! is updated instead dfl. Furthermore, this
algorithm is identical to the LMS1a-Wx. However, as we will see, there is a
difference in the convergence behavior, if the algorithm is updated in a block-
wise manner, as described in Section 2.9.

LMS2a-Wx In a similar way we can start with the inverse of (2.22)
_ —1
Wi = [Hy] ™ = [(1 - p) Hy + pxs”] (2.26)

and apply the matrix-inversion lemma wityf = (1 — u) H;, B’ = ux, C' =
1, andD’ = s, and after some calculations we finally obtain

1 H H
Wt+1 = 1_ u <I 1_ 'u n /j,SHuus ) Wt (227)
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which we will refer to as LMS2a-Wx [59]. Both algorithms, LMS1a-Wx and
LMS2a-Wx belong to the class sérial update algorithmsas they can be writ-
ten as a matrix produdV, , = AW, W, = (szl AWT) W, [17]. The
updateAW, is applied multiplicatively in the update equation and converges
towards the unity matrix. Note that the signal vectodoes not explicitly ap-
pear in these two update equations.

LMS2b-Wx Inasimilar way we can start with the inverse of (2.26) and apply
the matrix-inversion lemma witA’ = (1 — u) H;, B’ = uxs’, C' = I, and
D' =1, and after some calculations we finally obtain

1 —1
Wi = 14 (I S——— {I + A usH} > W,
—p L—p L—p

1 H H1—-1
H(I—,uus [(1 = @I+ pus”] )Wt

= [(1 —w)I+ uusH] ! W, (2.28)

which we will refer to as LMS2b-Wx.

2.4 RLSx

An alternative to the batch algorithm (2.12), where the correlation mafiggs
andRs are estimated in (2.13) and (2.14) with the help of all available mea-
surement data, respectively, is to estimate the correlation matrices recursively

Ry, = Rus,_, +xe5¢ (2.29)

Res, = Res,_, + 5457 (2.30)
We then obtain an online learning algorithm

Ht+1 = Rxst Ril (231)

SS¢

which we will refer to as RLS1-x, as it is actually a recursive least squares
(RLS) algorithm which minimizes the cost function

t
Jusex= Y lIxr — His,|l3 (2.32)

7=0
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at discrete time.

Note,f{xst from (2.29) andf{sst from (2.30) are not consistent estimates
of RxsandRss, respectively, as their norms grow with timeHoweverH;
from (2.31) is a consistent estimateBf"c*, asR.s, andRss, grow with the
same rate.

2.4.1 RLS1-Hx

The matrix inversion in (2.31), which is carried out at every time instaista
very demanding task. As we will now see, again with the help of the matrix-
inversion lemma, we can circumvent this matrix inversion. To this end, we
recursively updat® ! instead offlsst. By inverting both sides of (2.30) and

SS¢

~

using the matrix-inversion lemma witA’ = R, ,, B’ =5, C' = 1, and
D' = s we obtain

RE) = [Res,_, + s8] - (2.33)
= RS - R's [1+s"RLS| Ry (2.34)
=R - iR !ss"R} (2.35)

i = ! (2.36)

1+sHRL's
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where /i can be seen as a step size of the update. Next we use (2.34) to
modify (2.31) and find an efficient update B ;

Ht+1 = Rxs R71 (237)

SS

~ -1 R
=H; — H;s [1 + sHRgsls] sfR_!
~ ~ -1 X
+x [1 + sHRs_Sls} [1 + sHRs_Sls} sHR!
~ N -1 ~
— XSHRs_Sls [1 + sHRs_sls] SHRS_S1

=H, + (x — Hys) s R} (2.38)

1+sHR's
=H; +a(x—%x)s?R! (2.39)

whereey, =x — x =x — H;s is the current estimation-error vector. In the above

~

derivation we sometimes omitted the time-sample indexfot;, Rxs, ,,and

R.s,_, . We further used the fact that/ R_'s is a scalar.

2.4.2 RLS1-Wx

In case we want to updaW, ., instead ofH;,,, we can invert both sides of
(2.31) and usaW, 1 = H, },
Wi = Re, R (2.40)

XSt

However, just as in (2.31), we again need a matrix inversion for every update.
To avoid this, we start by inverting both sides of (2.39)

“ —1
Wi = [Wit 4 (x— Wits) SR (2.41)
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Applying the matrix-inversion lemmawitA’ = W; ', B’ = i (x — W; 's),
C' =1,andD’ = s"RZ gives
Wt+1 = Wt — ﬂWt (X — Wt_ls)
. -1 .
. [1 + as"TRIIW, (x — W[ls)] sHRZIW,
. -1
=W+ (s —u) [1 —asfR! (s — u)] sHR'W,
=W;+pu(s—u)sfRIW, (2.42)

with

_ fi _ 1
1 —ﬂstl;sl (s —u)  1+sHRZ'u

" (2.43)

wheref: is defined in (2.36). In the above derivation we used W,x. Note
thates £ s — u is also an estimation error, however, in general not the same as
6)(.

2.4.3 RLS1-Hx with exponential forgetting

To track time-varying systems, the cost function defined in (2.32) is extended
by an exponential weighting of the past measurements

t
Jusex = AT |Ix, — Hys |3 (2.44)
7=0

This causes exponential forgetting in the recursive estimates of the correlation
matrices

Rxst = A]-?{xst_l + (]. - A)XtStI{ (245)
Rsst = ARSSt—l + (]. - A)StSfI (246)

where\ denotes a forgetting factor with> A > 0. Doing similar calculations
asin Section 2.4.1 yields the same update equatidd fqr but with a different
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step sizei
1-A
it = = 2.47
e A+ (1—=X) sg{Rs_si_lst ( )
Hi = Hy + fi (x¢ — %X¢) S,{{R;sLl (2.48)
R 1 /A . R
-1 _ —1 ~ —1 Hp—1
Rl =5 (RSSH —juRel  sist RSSH) (2.49)

where (2.47), (2.48), and (2.49) are referred to as RLS1-Hx.

2.4.4 RLS1-Wx with exponential forgetting

Using exponential forgetting and doing similar calculations as in Section 2.4.2
yields the same update equation W, ; but with different step sizeg andji

1-A
= = 2.50
S +(1-NsfRe; |w (2.50)
Wit = Wi+ pg (s¢ —uy) SfIRS_sLth (2.51)
1-A
fle = - 2.52
M T - N siRZ s, (2.52)
. 1 /.. R .
-1 _ -1 ~ H-1 Hp-1
Rsst - X (Rsst71 - utRSStflstst Rsstfl) (253)

where (2.50), (2.51), (2.52), and (2.53) are referred to as RLS1-WKx.

As we will see in Chapter 6, the blind version of the RLS1-Wx will be a
key algorithm for the BSS problem.

2.5 Inverse modeling

In inverse modelingve try to find a matrixW = A~! which is close to the
inverse of the true systemA !, see also Fig. 2.2. Closeness can again be
measured in different ways. For example it could be defineffiby! — W||
or||I — G||r where
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Figure 2.2: Inverse modeling or inverse system identification. The error signal
es is used for the adaptation.

is the global response. However, by assumption there is no access to the true
matrix A, therefore closeness is usually defined in system identification as a
function of the prediction or estimation error

€s; é St — ét =St — U (255)
where
uy = ét - tht - Gtst + tht (256)

is the estimation of the source signal¥. can be either estimated by a batch al-
gorithm, or by an online learning algorithm. A batch algorithm uses at discrete
time ¢ all the past input and output time samples for the new estinMje,,
whereas an online algorithm uses at titranly s;, x;, and the current estimate
W, to evaluatéW,, ;.

2.5.1 Wiener solutionW""==*

We now wish to find the Wiener or minimum mean-squared error (MMSE)
solutionW""sEs which minimizes the cost function

Juses2 E{lesll3} = tr {Re,e, } (2.57)

where
Reo, £ E{eses” } = E {(s —u)(s— u)H} (2.58)
= Res — WRys — Rx W7 + WRWH (2.59)
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is the error covariance matrix. Towards this end, we build the gradient of the
cost function with respect to the mati¥

VwJuses= Vw tr {Reses} = —2R.x + 2W Ry« (2.60)

where we use®w = 253~ see [51] Eq. (B.18). By settinw Juse-sequal

to 0 and solving forW, we finally obtain the MMSE or Wiener solution

W'™sEs — Ry Ry (2.61)

Alternatively, we can also derive the Wiener solution by using the orthogo-
nality principle which says that the estimation error has to be orthogonal to the
input data

E {eSxH} =F {SXH} - WE {XXH} (2.62)
= Rax — W Rxx - (2.63)

By setting (2.63) equal t6 we obtain thaViener Hopf equatio(WHE)
W R,x = Rux . (2.64)
Solving forW also givesw" &< given in (2.61).

Note, H"S** andW""*** are both MMSE solutions, however, they are both
optimal for two different cost functions (2.4) and (2.57), respectively. Therefore
HVvses & [WMMSE'S]’1 = H"s® does not hold in general. By usif@ls =
ARg;, we see from (2.8) th@"™s=* = A. ThusH""** is a bias-free estimate
of A. However, the same is not true fav"s== as we will see in the following.
Starting with (2.61) and usinByx = AR AH + Ry, andRe, = Rps =0
we obtain

HMMsEs A [WMMSE—S]_l — (ARSSAH + Rnn) (RSsAH)_l (2.65)

= (AR AY + Ron) AR (2.66)
= A+ Ry AR (2.67)
and for the special case wheRg, = 02 I andR,,,, = o2 I we have
0_2
H"™* = A+ A" (2.68)
Os

We see thaHH""s%* is a biased estimate & if sensor noise is present. Hence,
HVsEs = HY™&= is valid only in the noise-free case. As a consequence, the
choice of the cost function is critical and has an impact on the estimate.



30 Chapter 2. Instantaneous mixing system

2.5.2 Batch learning

Since we usually do not know the true covariance matiRgs andR ., we
can replace them by estimatBs, andRyy, respectively. We can then esti-
mate the Wiener solution in (2.61) by

W =R R, . (2.69)

In a batch processing, we use all available measurement data of the system to
estimate the correlation matrices

T

R., = l Z stxf (2.70)
r t=1
1

R, = T thxfl. (2.71)
t=1

The number of sampleg needs to be large enough such tRat, has full rank
and is therefore invertible.

26 LMS-s

Analogously toJysgx in Section 2.3, we can formulate a steepest-descend
algorithm which minimizeg/ysg.sas

Wi =W, — ngJMSE—s (2.72)

- Wt + (Rsx - Wt Rxx)
=W;+pu (Rsx - Rux) . (273)

The step sizg: controls the stability and the rate of convergence of the algo-
rithm.

2.6.1 UpdatingW

LMS3-Ws By replacingRsx and R,x with their corresponding instanta-
neous estimates;x’ andu,x!?, respectively, we obtain

Wi =W+ pu(s—u)x? (2.74)
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which we refer to as LMS3-Ws. Note that Eq. (2.74) has great similarity with
the form of (2.20), the LMS1-Hx algorithm. But it is the error criterion which
makes the difference.

LMS4-Ws Alternatively, we can reformulate (2.73) as
Wt+1 = Wt +u (RSSAH - Rux) .

In the special case were the source signals are uncorrelated and of unity power,
i.,e. Rss = I, and by replacindR.y by its instantaneous estimaiec?, we
obtain

Wi =W, +p (A7 —ux) . (2.75)

This update form is not practicable as it requires knowledgk,dhe unknown
system which we actually wish to identify. However, we know that near conver-
genceW, ! is a fair approximation oA and we therefore can modify (2.75)
as

Wipr = Wi+ p (W —ux) (2.76)

which we refer to as LMS4-Ws. The behavior of this algorithm might be diffi-
cult to predict, especially far away from convergence. Nevertheless, as we will
see in Chapter 6, this algorithm has great similarity to its blind counterpart,
namely the infomax algorithm proposed by Bell and Sejnowski [7]. Further-
more, the update (2.76) can be used for second-order blind decorrelation of
instantaneous signal mixtures [31]. In the noiseless c&ég, ., = QA 1,
whereQ is a unitary matrix.

2.6.2 UpdatingW !

SinceH £ W~!, we can also transform an update equation for inverse mod-
eling into an update algorithm for system identification.

LMS3a-Hs First we start with (2.74) and invert both sides
— —1
Hypy = [We] ™ = [We+ (s —u)x] (2.77)
=H,; — yH; (s —u) [1 + pxPH, (s — 11)]_1 xTH,
=H;+p(x-—x)[1 — uxt (x—fc)]_1 xTH, . (2.78)
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Here we used the matrix-inversion lemma witti = W, B’ = (s —u),
C' = 1,andD’ = xf. We refer to (2.78) as LMS3a-Hs.

LMS3b-Hs We can start again with (2.77) but use the matrix-inversionlemma
with A’ = W;,B' = (s —u)x¥,C’' =1,andD’ =1
H;y =H;,— pH; (s —u) xH [I + pH; (s —u) XH]71 H;
=H, +p(x—%)x" [I-px-%x"] " H,. (2.79)

We refer to (2.79) as LMS3b-Hs.

LMS4b-Hs Starting with (2.75) we can apply the matrix-inversion lemma
A'=W,B =y (AH — uxH), C' =1I,andD’' =1

Hepy = [Wet] ™' = [We+ (A7 —ax)] ™ (2.80)

=H,; — uH; (AH — uxH) [I + pH; (AH — uxH)]_1 H;

= H, +p (xx" — H,A®) [T - p (xx — H,AY)] " H,

=H;+pu (xxH — R;(x) [I — i (xxH — R;(x)]_1 H;

—H, +p(x—%)x" [I-px—%)x"]" H, (2.81)
which is the same as LMS3b-Hs defined in (2.79). In this derivation we made
the assumption thdR.; = I, so thatH; A = H;Rs; A = Ry,. Furthermore,

we replacedRz by its instantaneous estimata’’. With these assumptions,
LMS4b-Hs is mathemathically not exactly the same as LMS4-Ws anymore.

LMS4a-Hs We now start with (2.81) and apply the matrix-inversion lemma
to the matrix inversgl — y (x — x) x*] “'with A'=LB' = —u (x —x*),

C' = 1, andD’ = x*!. After some calculations we obtain

i (x — %) xTH, (2.82)

H,a=H+ ——r——
e t+1—uxH(x—x)

which is the same as LMS3a-Hs defined in (2.78).
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2.7 RLSs

An alternative to the batch algorithm (2.69), where the correlation mafiggs
andRxx are estimated in (2.70) and (2.71) with the help of all available mea-
surement data, respectively, is to estimate the correlation matrices recursively

Rox, = Rux, | +sixt! (2.83)
f{xxt = lflxxF1 + xxH . (2.84)

We then obtain an online learning algorithm

W1 = Rex, Rr (2.85)

XXt

which we will refer to as RLS2-s, as it is actually a recursive least squares
(RLS) algorithm which minimizes the cost function

t

Juse-s = Z llsr — W x.||3 (2.86)
7=0

at discrete time.

2.7.1 RLS2-Ws

In (2.85) we have again a matrix inversion which has to be carried out at every
time sample. However, just as for the RLS1-Hx, by using the matrix-inversion
lemma we can circumvent the cumbersome matrix inversion. To this end, we
recursively updatﬁ;,ﬁt instead oiflxxt. By inverting both sides of (2.84) and
using the matrix-inversion lemma with’ = flxxt,l, B'=x;,C'=1,and

D' = x we obtain

R, = [Rxxtfl + thf]‘l (2.87)
=R - R !x [1 + lefl;ix] T TR (2.88)
=Rt — iR xx"R,; (2.89)

i ! (2.90)

1+ xH R x
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whereji can be seen as a step size of the update. Next we use (2.88) to modify
(2.85) and find an efficient update f&;,

R.L (2.91)

N -1 N N
=W, - W;x [1 + XHR;,%X] TR +sxPR])
N N -1 N
—sxfR_x [1 + xR} x] xR}
N -1 N
=W; - W;x [1 + XHR;;X] xR}
-1
HfH— Hp— Hp -
+s [1 +x inx} [1 +x inx} xR}
N N -1 N
— SXHR;iX [1 + xHR;i x] xHR;i
1
1+ xHRGIx

=W;+j(s—u)x?R} (2.93)

=W, + (s — Wix) xR} (2.92)

wherees=s —u=s — W;x is the current estimation-error vector. In the above
derivation we sometimes omitted the time-sample indexfox;, u;, Rsx, ;.

andRyx,_, . We further used the fact that’ R x is a scalar.

2.7.2 RLS2-Hs

In case we want to updald, , instead ofW;,,, we can invert both sides of
(2.85) and usél, ;1 £ W, !
Hii = R Ry (2.94)

SX¢

However, just as in (2.85), we again need a matrix inversion for every update.
To avoid this, we start by inverting both sides of (2.93)

Hyp = | H '+ (s —u)x"R| . (2.95)
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Applying the mqtrix—inversion lemmawitA’ = H; !, B' = ji(s —u), C' =
1,andD’ = xR} gives

H,1=H, - iH, (s —u) [1 +axHRIH, (s — u)] xHR_1H,
X -1 ~
=H; + fi(x —x) [1 — ix"R} (X—f()] xTR_IH,
=H, + p(x —x)x"RH, (2.96)
with

[ 1
pe—H — (2.97)
1—-xHRxx (x —x) 1+ xHRxxx
wherej: is defined in (2.90). In the above derivation we used H;s. Note

thate, £ x — % is also an estimation error, however, in general not the same as
eS.

2.7.3 RLS2-Ws with exponential forgetting

To track time-varying systems, the cost function defined in (2.86) is extended
by an exponential weighting of the past measurements
t

Juses= 3 AT [lsr — Wix,[3. (2.98)
7=0

This causes exponential forgetting in the recursive estimates of the correlation
matrices

Rex, = MRax,_, + (1 — N)sext? (2.99)

Ruoq, = ARux,_; + (1= N)xexy’ (2.100)
where\ denotes a forgetting factor with > A > 0. Doing similar calcula-

tions as in Section 2.7.1 yields the same update equatioWfar; but with a
different step siz¢:

1—A
fiy = - 2.101
e A+ (]. —/\) Xg{R’:’ltht ( )
Wit = Wi fig (st —ug) xRy, (2.102)
. 1 /.. . R
-1 _ -1 ~ H—1 Hp -1
R =y (Rl | — ARl xR ) (2.103)

where (2.101), (2.102), and (2.103) are referred to as RLS2-Ws.
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2.7.4 RLS2-Hs with exponential forgetting

Using exponential forgetting and doing similar calculations as in Section 2.7.2
yields the same update equation by, but with different step sizeg andji

1-A

= —— (2.104)
A+ (1= N xRix,_ %

Ht+1 Ht + ot (Xt — Xt) Xt int lHt (2105)

1-A

i = — (2.106)
A+ (1= N x Rox, %t

- (- ! 2.107

Rxxt - )\ (Rxxt 1 //’tRxxt 1tht Rxxt 1) ( . )

where (2.104), (2.105), (2.106), and (2.107) are referred to as RLS2-Hs.

2.8 MMSE—minimum mean-squared error

cost function H=A W=A"!
JMSE—X HMMsEx — Rxs Rs_sl VW MMSEx Y HMMSE—xfl
JMSE-s HMMsE=s A WMMSE—S_l ¢ VWMMSES — RsxR;i

Table 2.1: Relationship of Wiener solutions.

We now wish to evaluate the performanchge.x and Juse-s as defined
in (2.4) and (2.57), respectively, which we achieve with the Wiener solutions
HYsEx and WYsEs  To this end, we inserEIMsEx WMMSEx WMMSEs - and
H"M** (see Table 2.1) intR._ ., defined in (2.6) an®R ..., defined in (2.59).
Since the mixing system is time invariant, we hag, = R AH, Ry =
AR, andRy, = AR AY + Ry,,. Furthermore we usR.; = 021 and
R =021 for the evaluation offusgx and Jyse-s

By doing so, we obtain after longer calculations (with the help of the matrix-
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inversion lemma)

:R'exex (HMMSE x) = Rnn (2108)
Jusex (H™S=) = M52 (2.109)
Re.c, (W) = A" Ryn A~ (2.110)
Imse-s (W) = an||A Y% (2.111)
Re,e, (H"*) = (I + [ARSSAH] ! R,m) (2.112)
Jusex (H™%) = (M + —||A 1||F> (2.113)
Re.c., (W) = [RZ! + AHR;;A] - (2.114)
2 —1
JMSE—S (WMMSE—S) — UI’% tr <|:AHA + 0—21:| > . (2115)
Os

Note, the values in (2.109) and (2.115) also represent the lowest achievable
values forJysex andJyse-s respectively, namely theinimum mean-squared
error. The special case wheteis unitary results in

Jusex (H™) = Moy (2.116)
Juse-s(W"S=) = M o2 (2.117)
2
JMSEx (HMMSE-S) = ]\4(7?1 <1 + U—S) (2.118)
Os
o2\ *
Jvses(WMES) = Mo? <1 + —3) : (2.119)
Os

2.9 Block-wise update

Instead of updatindd or W at every time sample, we could do so after every
block of L. samples. The update equations are thereby modified suchthat
ner and outer products are replaced by their average over a whole blogk of
samplesFor illustration we give two examples: LMS1-Hx in (2.20) becomes

L-1

> (ke — %epr) sthy (2.120)
(=0

1
Hyp =H; + Iy
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and LMS1a-Wx defined in (2.24) becomes

L—-1
I
Wt+L =W, + -1 Z St+1 — llH_l St+th

L—p Y s (ser0 —ugyq) 1=0
=0

(2.121)

The block-wise update equations of the other LMS-type algorithms are derived
similarly. Note, usually a block-wise update is performed in a different way,
namely
[ L—-1
Wieir =W+ o > AWy, (2.122)

2.10 Simulation results

2.10.1 Performance of LMS algorithms

First we want to examine the performance of the LMS-type algorithms. We use
the mixing model with additive noise as defined in (2.1). The sensor noise is
mutually independenR,,, = 021, ando, = 0.01 (—40 dB). The M x M
dimensional mixing matribA has real-valued entries with/ =10. The source

signals are white Gaussian noise sequences, mutually independent, and of unity

power,Rss = 1.

We analyze the behavior with two different mixing matricesone is uni-
tary and one is ill-conditioned. By definition the unitary mixing matrix has
x(A) £ ||Allz - ||A7Y|2 = 01/om = 1, whereas the ill-conditioned has
logarithmically distributed singular values and condition numpéA) = 10.
The largest singular value for both mixing matrices|&||; = o; = 1. Ini-
tially we setHy = Wq = I. All plots are averages over 30 independent runs.
The simulation setup is illustrated in Fig. 2.3.

Sample-wise update. = 1

In the first simulation we analyze the convergence rate of the LMS algorithms
based on a sample-wise update=£ 1) of H andW. The learning curves are
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Figure 2.3: System identification and inverse modeling (inverse-system iden-
tification). Either of the error signale, or es, can be used for the
adaptation. However, the performance behavior can strongly de-
pend on the choice of the error criterion. During the adaptation we
have constraine8V = H~*, and vice versa.

averages over 30 runs and shown in Fig. 2.4 and Fig. 2.5. The corresponding
step sizeg are listed in Table 2.2. We have the following remarks:

e For L =1 we can subdivide the algorithms into three classes, where the
algorithms within one class are algebraically equivalent
(a) LMS1-Hx, LMSla-Wx, and LMS1b-Wx,
(b) LMS2-Hx, LMS2a-Wx, and LMS2b-Wx,
(c) LMS3a-Hs, LMS3b-Hs, LMS3-Ws, LMS4a-Hs, and LMS4b-Hs.

Thus, only one learning curve is shown for each class.

e For the unitary mixing matrix the algorithms from class (a) and (c) are
dual in the sense that the behaviorJfse.x and Juses for class (a) is
similar to the behavior ofyse.s and Juse for class (c), respectively.

e For the algorithms of class (b) there are two learning curves depicted,
which stem from using different step sizesThis is to demonstrate that
the algorithm is stable, but has a very high steady-state error level.
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Plot | Algorithm x(A) =1 | x(A) =10 | Comments
M M
Fig. 2.4 Fig. 2.5
(a) | LMS1-Hx 0.08 0.08
(b) | LMS2-Hx 0.08/0.01| 0.08/0.01| very high misadjustment
(c) | LMS3a-Hs 0.08 0.2
LMS4a-Hs
(c) | LMS3b-Hs 0.08 0.2 fast if A is unitary
LMS4b-Hs
Fig. 2.4 Fig. 2.5
(a) | LMS1a-Wx 0.08 0.08
() | LMS1b-Wx 0.08 0.08
(b) | LMS2a-Wx | 0.08/0.01| 0.08/0.01 | very high misadjustment
(b) | LMS2b-Wx | 0.08/0.01| 0.08/0.01 | very high misadjustment
(c) | LMS3-Ws 0.08 0.2
LMS4-Ws - - no convergence, unstable
Table 2.2: Step sizeg: for the simulations of Fig. 2.4 and Fig. 2.5 with block lendth= 1. The

step sizes are chosen such as to achieve the fastest initial convergence rate without
becoming unstable. The condition numbers of the unknown mixing matrices are
x (A) = 1andy (A) = 10. The update equations of the algorithms are given in
Table E.3 and E.7 in Appendix E.

The convergence rate of the algorithms in class (a) are robust against the
eigenvalue spread &k andR,. It rather depends on the eigenvalue
spread olRs, which is equal to unity in this case.

LMS4-Ws does not converge faV, = I to A~!. Even usingW, =
A~! caused the algorithm to drift away from this point, although slowly.
However,W, A was adapted to a time-varying unitary mat€x.

The final steady-state error level Q}JMSE_X is equal to the sensor noise
level (—40 dB), irrespectively ofy (A). This is not true fors; Juse-s
There the steady-state error level depends strongly oA), as for a
large x (A) the sensor noise appears strongly amplified at the output.
See also the theoretical analysis in Section 2.8.

The algorithms of class (a) show from the beginning a monotonic de-
cay of Jusex, In contrast toJyse.s, Which has an initial peak. For the
algorithms of class (c) it is just the other way round.
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Plot | Algorithm | x(A) =1 | x(A) =10 | Comments

M M
Fig. 2.6 Fig. 2.7
(a) | LMS1-Hx 1.0 0.8
(b) | LMS2-Hx 0.5 0.5 very high misadjustment
(c) | LMS3a-Hs 0.03 0.1
LMS4a-Hs
(d) | LMS3b-Hs 0.8 1.2 fast if A is unitary
LMS4b-Hs
Fig. 2.8 Fig. 2.9
(a) | LMS1a-Wx 0.03 0.03
(b) | LMS1b-Wx 1.0 1.0
(c) | LMS2a-Wx 0.03 0.03 very high misadjustment
(d) | LMS2b-Wx 0.3 0.3 very high misadjustment
(e) | LMS3-Ws 0.9 0.9
LMS4-Ws - - no convergence, unstable

Table 2.3: Step sizes: for the simulations of Fig. 2.6, Fig. 2.7, Fig. 2.8, and Fig. 2.9 with

block lengthL = 30. The step sizes are chosen such as to achieve the fastest
initial convergence rate without becoming unstable. The condition numbers of the
unknown mixing matrices arg (A) = 1 andy (A) = 10. The update equations

of the algorithms are given in Table E.3 and E.7 in Appendix E.

e The step-size normalization in LMS1a-Wx, LMS3a-Hs, and LMS4a-Hs
has a stabilizing effect on the adaptationuifis chosen such that the
algorithm has a fast initial convergence rate. However, for small step
sizesu the step-size normalization can also be neglected. We then derive

Wt+1 = Wt + u (S — 11) SHWt (2123)
which we refer to as LMS1c-Wx and
H. =H +p((x—x)x"H, (2.124)

which we refer to as LMS3c-Hs and LMS4c-Hs.
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Figure 2.4: Unitary mixing matrix , y (A)=1, L=1.
Performanceyl; Jusex (left column) and Juse-s (right column)
of the following algorithms:
(a) LMS1-Hx, LMS1a-Wx, LMS1b-WXx,
(b) LMS2-Hx, LMS2a-Wx, LMS2b-WXx,
(c) LMS3a-Hs, LMS3b-Hs, LMS3-Ws, LMS4a-Hs, LMS4b-Hs.
The update is done sample by sample. The curves are averages
over 30 runs. The step sizgsare given in Table 2.2.

Block-wise updateL = 30

In the second simulation we compare the convergence rate of the LMS algo-
rithms based on a block-wise update with block lengts 30. The learning
curves are averages over 30 runs and shown in Figs. 2.6—2.9. The correspond-
ing step sizeg are listed in Table 2.3 We make the following observations:

e The three classes obtained with=1 do no longer hold for a block-wise
update off andW with L > 1.

e The algorithms which are derived from minimizinfyse.x are robust
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Figure 2.5: lll-conditioned mixing matrix , x (A)=10, L=1.

Performancey; Jusex (left column) and Juse-s (right column)

of the following algorithms:

(a) LMS1-Hx, LMS1a-Wx, LMS1b-WXx,

(b) LMS2-Hx, LMS2a-Wx, LMS2b-WX,

(c) LMS3a-Hs, LMS3b-Hs, LMS3-Ws, LMS4a-Hs, LMS4b-Hs.

The update is done sample by sample. The curves are averages
over 30 runs. The step sizgsare given in Table 2.2.

against the eigenvalue spreaddfindR«x. Their convergence depends
on x (Rss), Which is equal to one in this case. This observation is not
true for the algorithms which aim at minimizinfse-s

The final value forJyse-sis higher for the ill-conditioned case. See also
the theoretical analysis in Section 2.8.

For L =1, the two algorithms LMS1a-Wx and LMS1b-Wx which both
are algebraically equivalent to LMS1-Hx, show quite a different con-
vergence behavior fo. = 30. The same is true for LMS2a-Wx and
LMS2b-Wx, LMS3a-Hs and LMS3b-Hs, and LMS4a-Hs and LMS4b-
Hs, respectively.
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e LMS4-Ws does not converge. This is not very surprising, as the same
phenomenon was also seen foe 1.

d d Jmse—x [dB] Jmse—s [dB]
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0 0 ° @ O
(d) \ -20 -20
—-20 -20
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0 50 100 0 _ 50 100 iteration iteration
iteration iteration
_ _ o ) Figure 2.7: lll-conditioned mixing matrix , x (A)=10, L=30.
Figure 2.6: Unitary mixing matrix , x (A)=1,L= 301 . Performancel; Jusex (left column) andi; Juse-s (right column)
Performance;; Juse-x (left column) andy; Juse-s (right column) of the following algorithms:
of the following algorithms: (a) LMS1-Hx,
(@) LMS1-Hx, (b) LMS2-Hx,
(b) LMS2-Hx, (c) LMS3a-Hs, LMS4a-Hs,
(c) LMS3a-Hs, LMS4a-Hs, (d) LMS3b-Hs, LMS4b-Hs.
(d) '—MS3b'HS’ LMS4b-Hs. ) The update is done block wise. The curves are averages over 30
The update is done block wise. The curves are averages over 30 runs. The step sizgsare given in Table 2.3.

runs. The step sizgsare given in Table 2.3.
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Figure 2.8: Unitary mixing matrix , x (A)=1, L =30. Figure 2.9: lll-conditioned mixing matrix , x (A) =10, L=30.
Performancey; Juse-x (Ieft column) and-; Juse-s (right column) Performancey; Jusex (left column) and-; Juse-s (right column)
of the following algorithms: of the following algorithms:
(a) LMS1a-Wx, (a) LMS1a-Wx,
(b) LMS1b-WX, (b) LMS1b-WX,
(c) LMS2a-Wx, (c) LMS2a-Wx,
(d) LMS2b-WX, (d) LMS2b-WX,
(e) LMS3-Ws. (e) LMS3-Ws.
The update is done block wise. The curves are averages over 30 The update is done block wise. The curves are averages over 30

runs. The step sizgsare given in Table 2.3. runs. The step sizgsare given in Table 2.3.
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2.10.2 Performance of RLS algorithms

Now we want to investigate the performance of the RLS-type algorithms. We
use again the mixing model with additive noise as defined in (2.1). The sensor
noise is mutually independeM®n, = 021, ando, = 0.01 (—40 dB). The

M x M dimensional mixing matriA has real-valued entries with! = 10.

The source signals are white Gaussian noise sequences, mutually independent,
and with unity powerRgs = 1.

We use three different mixing matrices wigh(A) = 1, 10, 100, respec-
tively, logarithmically distributed singular values, where applicable, ané
[|A]l2 = 1. The forgetting factor is\ = 0.97, the block sizel. = 1. The initial
conditions for the adaptation ak&, = Wo = I, andRss, = Rxx, = 0.001-L.
The learning curves are averages over 30 runs and shown in Fig. 2.10 and
Fig. 2.11. We make the following observations:

e RLS1-Hx and RLS1-Wx have the same performance, as they are alge-
braically equal. The same is true for RLS2-Hs and RLS2-Ws. Differ-
ences in the convergence behavior are due to numerical inaccuracies, es-
pecially for the case of large eigenvalue spread of the mixing matrix.

e The lower bound fotyse-s, given in (2.115), is for this simulation setup
—40 dB, —26.08 dB, and—10.2 dB for x (A) =1,10, and 100, respec-
tively. As seen from the performance curves, these values are almost
achieved by RLS1-x and RLS2-s. Note that regardless of the algorithm,
Jumse-s cannot become arbitrary close to the sensor noise level for a non-
unitary mixing system.

¢ Additional simulations have shown that reducing the sensor noise from
—40 dB to —60 dB causes a further decrease of the fidakex and
Juvse-s by approximately another 20 dB. This coincides with the theoret-
ical analysis from Section 2.8 for a smal|.

2.11 Summary

In this chapter we have developed several LMS- and RLS-type algorithms for
system identification and inverse modeling of an instantaneous mixing system.
We thereby have used two different error critetigse.x, Wwhich measures the
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output estimation or output prediction ersor x of the unknown system, and
Jumse-s Which actually measures the input estimation esreé of the unknown
system. Independent from the cost function, we can either ufiflateW £

H!, see Table 2.4. Thereby the matrix-inversion lemma has been shown to
be a very powerful tool to transform an algorithm for system identification into
a corresponding algorithm for inverse modeling. The relationship between the
derived algorithms is shown Table E.1 in Appendix E. The derived update
equations are summarized in Table E.3 and E.7.

From the simulation results we have also seen which algorithms are robust
against an eigenvalue spread of the unknown mixing matrixn Chapter 5
we extend these algorithms to make them applicable for general multichannel
system identification and inverse modeling, where the elements of the mixing
matrix are filter polynomials. Furthermore, in Chapter 6 we will transform
thesenon-blindalgorithms intoblind algorithms by exchanging the non-blind
error criteria with a blind error criteria. Since we know the performance ranking
of the non-blind algorithms, we expect that their blind counterparts will exhibit
a similar performance ranking within the group of blind algorithms.

costfunction| H=A W=A"!
JmsEx H, — W, =H;!
JMSE-s H,=W,! «+— W,

Table 2.4: Transforming an update equation for system identification into one for inverse mod-
eling by using the matrix-inversion lemma, and vice versa.
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Figure 2.10: RLS1-x

Performance’; Jusex (left column) ands; Juse-s (right column)

of the algorithms RLS1-Hx and RLS1-Wx with forgetting factor
A =0.97. The mixing matrixA has logarithmically distributed
singular values and condition number:

@x(A)=1,
(b) x (A) = 10,

(c) x (A) = 100.

The curves are averages over 30 runs.
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Figure 2.11: RLS2-s

Performance’; Jusex (left column) andy; Juse-s (right column)

of the algorithms RLS2-Hs and RLS2-Ws with forgetting factor
A =0.97. The mixing matrixA has logarithmically distributed
singular values and condition number:

@x(A)=1,
(b) x (A) = 10,

(c) x (A) = 100.

The curves are averages over 30 runs.



Chapter 3

Circulant matrices

In this chapter we describe the mathematical tools required to extend the adap-
tive algorithms for the instantaneous mixing case to also work for the convolu-
tive mixing case.

From a Linear Algebra point of view we will focus on thgFT matrix
circulantandblock-circulant matricesCirculant matrices have very attractive
properties, e.g., the commutative law under multiplication. Besides, the DFT
matrix plays a major role in the analysis of circulant matrices.

We also define many operations which are related to signal processing and
describe fast implementations thereof, e.g., convolution, correlation, time re-
versal of a time series, deconvolution, and others. These are described first for
the single-channel case followed by a treatment of the multichannel case.

We describe these operations with polynomials, e.g. the two-sideghs-
form, and also in the context of circulant matrices. In the subsequent chapters,
we will use the polynomial representation of time series and FIR filters. For
the implementation, however, it is more convenient to work with circulant or
diagonal matrices, for reasons of computational efficiency.

For a thorough analysis of circulant matrices and their properties, the reader
is referred to [25, 48, 49].

53
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We will use the following notations:

A denotes a diagonal matrix,

A denotes a block diagonal matrix,

A denotes a circulant matrix,

A denotes a block circulant matrix,

a denotesliag (A).

a denotes the first column vector 4f.

3.1 Special matrices

3.1.1 DFT matrix
The normalized” x C' DFT or Fourier matrixF is defined as:
[Fclpn=—=€ 7 ¢™  (m,n=0...C-1) (3.1)

with C being the size of the DFT or FFFE. is symmetric and unitary, and has
the following properties:

F!=F=F (3.2)
F' =F (3.3)
F'=1 (3.4)
F?P=F 2= (3.5)

where thecirculant-time-reversal matrior circulant exchange matrid; is de-
fined as

(3.6)
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with J2 =1 (involutary). The Fast Fourier Transform(FFT) is a fast method
to compute the matrix-vector produet= Fx or the similarity transfornX =
FXF ! ie.x=FFT(x).

Furthermore, we define the following C' x M C diagonal block matrix

Fc
Ty 21y © Fo = (3.7)
Fo
Ty = (Ly © Fo) !
= Iy @ F;! (3.8)

where® denotes the Kronecker product. Note tAat = Fo. Properties of
Kronecker products are described in [15, 46, 101].

3.1.2 Exchange matrix

Theexchange matrid is defined as

J2 (3.9)
1

and has the property? = I (involutary), i.e.,J is its own inverseJ —! = J.
The productlx = (z, ... ,:nl)T changes the ordering of the elementsx If
contains the elements of a two-sided time-series, then

T T
J@_ g, . zo,...,21) =(TTn, .-, T0,-- -, T_T}) (3.10)
performs a linear time reversal of the sequence.

Pre- and postmultiplication of a square matAxby J flips the row and
column ordering

JAJ=| . (3.11)

ar,m v 11
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3.1.3 Projection matrix

A projection matrixP has the following properties:

Property 3.1.1 Projection matrices are idempote®? = P.

Property 3.1.2 The eigenvalues of a projection matrix are either zero or one.

Consequently the rank of a projection mat#xs tr {P}.

We introduce the following projection matrix which we will use in the suc-
ceeding sections

IN2+1 0 0 cxC
PN N, = 0 0 0 : (3.12)
0 0 Iy,
A special case is wheN = N; = N,
IN+1 0 0 cxC
P yn= 0 0 0 : (3.13)
0 0 Iy

The projection matrixP is used mainly to force certain filter coefficients to
become zero, e.g.

P_nony (hoy -y BNy N1 -+ -y e N1 BNy - -y ht)

= (hos . hnyy 0y 0, Ny hy) (3.14)
Pony (hoy- -y hvgy BNt - B Np1s By o2 h1) T

= (ho, .-, hn,,0,...,0)" . (3.15)
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3.1.4 Diagonal matrix
Given a vectoh = (hy, ..., hc_l)T, the corresponding diagonal matiik is
defined as

ho
H = diag [}_1] = . (3.16)
hc—1

The inverse operation
h = diag (ﬁ) (3.17)

is defined as extracting the diagonal of a matrix into a vector.

3.1.5 Circulant matrix

Given a vectoh = (ho, ..., hc,l)T, the corresponding circulant matif is
defined as
[ hoe he-1 ... hs hy ]
hi ho hc-1 ho
H=Ch)2 | h hy ho . . (3.18)
hc_1
L hc_l ha hi hO |

The first column oH determined by and the succeeding columns are cyclicly
down-shifted versions di. The inverse operation is defined as

h=C!'(H) 2 He, (3.19)

and returns the first column of the circulant matfix Heree; denotes the first
unit vector.

Circulant matrices have the following properties:

Property 3.1.3 Circulant matrices are Toeplitz.
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Property 3.1.4 If A is a circulant matrix, the’A*, AZ, and A# are also
circulant matrices.

Property 3.1.5 If A andB are circulant matrices, theh+B is also a circulant
matrix.

Property 3.1.6 If A andB are circulant matrices, theAB is also a circulant
matrix.

Property 3.1.7 If A andB are circulant matrices, theAB = BA (commu-
tative law).

Property 3.1.8 If A is a circulant matrix, thed A7 = ATA = (AAT)T is
symmetric (and Toeplitz).

Property 3.1.9 If A is a circulant matrix, thelAA* = A*A = (AA*)* is
real.

Property 3.1.10 If A is a circulant matrix, thed A# = AHA = (AAH)H
is self-adjointor Hermitian re(AA*) is symmetric andm(A A ) is skew
symmetric.

Property 3.1.11 JAJ = AT,
Property 3.1.12 JAATJ = ATA = AAT.
Property 3.1.13 If A is a circulant matrix, then the similarity transform
A =F'AF (3.20)

is just theeigenvalue decompositiarf A. A is a diagonal matrix which con-
tains theeigenvaluesf A, and the columns/rows & contain the correspond-
ing eigenvectorsAs a consequence, the similarity transform

FAF'=A (3.21)

diagonalizesinycirculant matrixA.. This is probably the most important prop-

erty of circulant matrices, and many of the other properties can easily be proven
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by using (3.20) or (3.21). Some other useful relations are

FAF'=A (3.22)
FAYF-' = A* (3.23)
FATF ' =F?AF 2 = JAJ, (3.24)
FA*F~' = F?PA*F~? = JLA*J.. (3.25)

Property 3.1.14 The eigenvalues of a circulant mat = C(a) are the DFT
coefficients ofa, i.e.,a = diag (A) = Fa.

Property 3.1.15 The inverse of a circulant matrix of full rank is also a circulant
matrix. From (3.20) we immediately obta—! = F~!A~'F.

Property 3.1.16 The pseudoinverse of a circulant matrix is also a circulant
matrix, A# = F~1A#F,

For a thorough analysis of the properties and the corresponding proofs see [25].

3.1.6 Circulant permutation matrix

A special class of circulant matrices are circulant permutation matrices which
are defined a8(e;)“*“ for 1 <i <C, ande; is theith unity vector, e.gC (e;) =
I. We define the following’ x C matrixJ¢ as

JOXC 2 Cleg) = . (3.26)
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Besides the properties of circulant and permutation matrices, niatras the
following properties:

J=J°=1 (3.27)
Jk = J<k>e (3.28)
Jt=J7 (3.29)
J k=30 (3.30)
I~k =333 (3.31)
J=JJ. =JF*. (3.32)
Pre-multiplication of a vector wit shifts the vector elements in a cyclic man-
ner. Leth = (hq,...,hc—1)" . Then we have
= (hy,...,he—1,ho)" (3.33)
J*h = (hg,...,ho—1,ho, ..., he—1) (0<k<C—1) (3.34)
J*h = (hekser e ho—1,hoy o her—150) " (3.35)

With the help ofJ, we can easily rearrange a block-partitioned matrix as
shown in the following example. We may write&Cax C' matrix as

D C cxC

B AmX’I’L

AmX’I’L B
C D

Jm

J = (3.36)

There are also some properties related to circulant matrices. Pre- and post-
multiplication of a circulant matrix witlJ also shifts the matrix elements in a
cyclic manner. LeH = C(h). Then we have

JFH=HJ* =CJ"n) (3.37)
JPHI =J" T H=HJ"" =C(J™ " h) (3.38)
JTHI "=J""H=HJ""=C(J™ "h). (3.39)

The usefulness af lies mainly in the rearrangement of the vector or matrix
elements of operauons with circulant matrices, as seen in the following: Let

U2Cu),W=2a(Cw),X2(Cx),U £2CW),W £(Cw)andX' £
C(x'). We have the following relation

U=WX < Jm0=J"Wi"j "X < U=wWX.
(3.40)
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By choosingu’ =J™ u, x —Jm+” w, andx’ =J " x, we haveU’ =J™ U,

W’ =Jm+ W, andX’ =J " X. Note,u andu w andw’, andu andu’

have exactly the same elements, respectively, but with a different ordering. We
will use (3.40) later on in Section 3.2.2 when we discuss some algorithm design
issues.

3.1.7 Block diagonal matrix

An MC x NC block diagonal matrix is defined as
H, ... Hy
H= : : (3.41)
Hy: ... Hyx
where each submatrid,,,, is aC x C diagonal matrix.

For block diagonal matrices with block dimensiafisx C' the following
properties hold:

Property 3.1.17 If A andB are two block diagonal matrices, thén+ B is
also a block diagonal matrix.

Property 3.1.18 If A andB are two block diagonal matrices, thAnB is also
a block diagonal matrix.

Property 3.1.19 The inverse of a block diagonal matrix of full rank is also a
block diagonal matrix.

Property 3.1.20 The pseudoinverse of a block diagonal matrix is also a block
diagonal matrix.

In contrast to diagonal matrices, the commutative law does not hold for block
diagonal matrices.
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3.1.8 Block circulant matrix

An MC x NC block circulant matrix is defined as
H, .. Hy
H= : : (3.42)
Hyp ... Hyn
where each submatriéd,,,, is aC x C circulant matrix.

For block circulant matrices with block dimensio@'sx C the following
properties hold:

Property 3.1.21 Block circulant matrices are block Toeplitz, i.Bl,,,, is Toeplitz.

Property 3.1.22 If A is a block circulant matrix, thed*, A7, andA* are
also block circulant matrices.

Property 3.1.23 If A andB are two block circulant matrices, thet + B is
also a block circulant matrix.

Property 3.1.24 If A andB are two block circulant matrices, theB is also
a block circulant matrix.

Property 3.1.25 The similarity transforrrljlnm~ = F~'H,,,F is the eigen-
value decomposition of the circulant submafti,,, .

Property 3.1.26 The transfornf = TMPNITIQ1 transforms a block circulant
matrix H into a block diagonal matri¥.

Property 3.1.27 The transformi = Tﬂ}lﬁTN transforms a block diagonal
matrix H into a block circulant matri¥.

Property 3.1.28 The eigenvalues of the circulant submattly,,, are the DFT
coefficients of the first column dfi, .., i.e., H,,, = C(hyn), hynp = Fhyy,,.

Property 3.1.29 The inverse of a square block circulant matrix of full rank is
also a block circulant matrix.
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Property 3.1.30 The pseudoinverse of a block circulant matrix is also a block
circulant matrix.

In contrast to circulant matrices, the commutative law does not hold for block
circulant matrices.

3.2 Convolution

3.2.1 Linear convolution

Linear convolution of two sequences Letz andw be two sequences

c&2{z_g,...,T0,...,07} (3.43)

wE{w Ny, .. Wo, ., W, ) (3.44)

The linear convolution ofv andz is defined as

WHT=Trw=1u2 {U— = Nyyy o+ oy U0y -+ o s Wt Ny, | (3.45)
where
Nw T
ur = (w*x); S Z Wy Ty = Z Wi Ty - (3.46)
n=—Nw n=—"7Tx

Fig. 3.1 illustrates the linear convolution of (3.46) and also reveals the bound-
ary effects, caused by the finite length of the two sequeneesw.

Linear convolution as a product of two polynomials Alternatively, we can
describe the convolutiom = w * 2 by a multiplication of two polynomials

u(z) = w(z)x(z) (3.47)
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X1, Xo X7,
*
BN w
W_n,, Wy Wh,,
I
S [ ] | o |
U_7 N, U_T 4N, Uo Uz, N, U7, N,

Figure 3.1: Linear convolution of two sequences of finite length=£ w * x).
The boundary effects af;, whereu, is built from a sum of fewer
than2N,, + 1 terms, are shown graphically: Fading in on the left
fort < —Tx + Ny, and fading out on the right far> T — Ny,

wherez(z), w(z) andu(z) are double-sided-transforms (Laurent series) of
z, w andu, i.e.,

z(z) 2 Z Tzt (3.48)
w(z) = Z wpz " (3.49)

u(z) 2 Z gz ™" (3.50)

By settingz = e/ we obtain the frequency response, and samptiog the
. . . 21, 27 . . . .
unit circle, i.e.z = e/*& | gives the discrete Fourier domain.

Linear convolution of two vectors The convolution of two sequences can
also be described as the convolution of two vectors, e, w x x with

x = (w,Tx,...,azo,...,asz)T (3.51)
w2 (w,NW,...,wO,...,wNW)T (3.52)
llé (U—TX—NW;---7“07---;UTX+NW)T- (353)
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We define the convolution operateas

u=wxx=T(w)x (3.54)
=x*sw=T(x)w (3.55)
U_Ty—Ny
w0 -
(D : Ty
Wo W_pN,
U = Zo (3.56)
wh,, Wo
UT, : TT,
L WN, |
UTy+ Ny

T (w) is a lower triangular Toeplitz matrix having padded with zeros in its

first column [65]. Note thaf (w) has dimensioi2(7x + Nw) + 1) x (2Tx+ 1)
whereasT (x) is a(2(Tx + Nw) + 1) x (2Ny + 1) lower triangular Toeplitz
matrix. In fact, the dimensions of the matfixX.) are defined by the argument

and the subsequent vector. The extension to the convolution of three sequences
u = w * a * s is straightforward and is defined as

u=wxaxs=T(w)(T(a)s) (3.57)
=T(T(w)a)s (3.58)

We say that the linear convolution of two time series= w * x, the mul-
tiplication of their corresponding polynomials of the double-sidgthnsform
u(z) = w(z)z(z), and the convolution of two vectors which contain the coef-
ficients of the time seriea = w * x areisomorphigi.e.,

u=wx*xx Zu(z) =w)r(z) Tu=wxx (3.59)

as all representations yield the same result, i.e., the elemenis.0f) andu

are identical. In Section 3.2.3 we will describe an efficient method for comput-
ing the linear convolution of two time series, by exploiting a fast algorithm to
compute the circular convolution.
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3.2.2 Circular convolution

Circular convolution of two sequences Let Z andw be two sequences of
finite lengthC > 2max (T, Nw) + 1, which are zero-centered’(odd)

1>

{0,...,0,z_7,,...,%0,...,273,0,...,0}, (3.60)
{0,...,0,w_N,,-..,wo,...,wnN,,0,...,0}, . (3.61)

z

(>

w
We define theircular convolutionas

G=0®F (3.62)

Nw
Uy = (’lD ®i')t £ Z WpT<t—n>c tE {_LC/QL' ) LC/QJ} (3-63)
n=—Nw

Tx
2 3 wainsern t€{-C/2],---,(C/2]}. (3.64)

n=-—Tx

The sequencé also has lengtl@’. Thegeneralized remaindet . >¢ is de-
fined in Appendix D.1 and returns values from [ C/2],---,|C/2]}. De-

pending onC, Ty, and Ny, we distinguish between three different cases, see

also Fig. 3.2:

1.[C > 2 (T + Na) +1]

U = {0,...,O,U,TX,NW,...,UO,...,UTX+NW,0,...,0}C (365)

The non-zero elements of the circulant convolutioa @ ® Z coincide
with the elements of the linear convolution= w * z.

2.[C=2(T+ N) +1]

U = {U_TX_NW7'"7u07"'7uTX+NW}C (366)

The linear and the circular convolution are equal, iie= @& ® & =
w*xTr = u.
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=] [ ]

Z

U_7,- N, U_7 4Ny, Uo Uz, — Ny UT4 Ny,
u_r, ur,
L] [ | NE
X_1, Xo X,
®
| [T T[] o
W_nN, Wo Wh,,

:
§

U_7 4N Uo Ur - N,
u_r, ur,
‘ ‘ data ‘ ‘ ZET0s Wm wrap-around effects

Figure 3.2: Circular convolution of two sequencés= w ® & with
C > 2(Tx+ Ny) + 1, T, = Tx + Ny, (top),
C =2(Tx+ Ny) + 1, T, = Tx + Ny, = C (middle),
C <2(Tx+ Ny) +1,T, = C — Tx — Ny — 1 (bottom).
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U = {u_Lc/2J,...,u,Tu,...,uo,...,uTu,...,uLC/ZJ}C (367)

where the subsequen@® 7, 7, (@) £ {u_1,,...,uo,...,ur,} COIN-
cides with the2T,+1 center elements of the linear convolutioa= w*z,
ie.,

Pz, (@) = P_r, 1, (u) & {u_m, ..., uo,-.-,ur} (3.68)

which holds for
T,.<C—-Tx — Ny —1. (3.69)

The upper boundin (3.69) was obtained frafy+1 = 2C—2 (Tx + Nw)—
1, see Fig. 3.2.

Circular convolution as a multiplication of two polynomials  Alternatively,

we can describe the circular convolution= @ ® z for a given lengthC' by a
multiplication of two polynomials followed by a circular polynomial projection

i(z) £ P (u(z)) (3.70)

= Pc (w(z) z(2)) (3.71)

where P (.) is the circular polynomial projection operatodefined in Ap-
pendix D.2. Similar to (3.68) we have

Ty
Pogyr, (0(2) = Pogym, (u(z) £ ) wz (3.72)

t=—T1,
which holds for
TUS{TX+NW for 2 (Ty+ Nw) +1< C

C—Ti—Ny—1 for 2(Tx + Ny) +1 > C > 2max (Ty, No) + 1.
(3.73)

just as fora = @ ® Z. This means that the cent&f, + 1 elements of the linear
and circular convolution are equal.
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In the case wher€ < 2Ty +1or C < 2Ny + 1, we can write with (D.111)
a(2) = Pe (Pe (w(2) Po ((2))) (3.74)
= Pe (i(2) i(2)) (3.75)
wherez(z) 2 Pe (z(z)) andw(z) £ Pe (w(z)).

Note, that if we find a fast algorithm for the computation of a circular con-
volution, we immediately also have a fast algorithm for a linear convolution,
because due to (3.72) there are alw2¥s+ 1 elements of the circular convo-
lution which coincide witi2T, + 1 elements of the linear convolution. From
(3.73) we see that increasidgalso increase$, for small values of”.

Circular convolution of two vectors We define the following vectors

fcé(azo,...,:UTX,O,...,0,:U,Tx,...,:n,1)T (3.76)
v"vé(wo,...,wNW,O,...,O,w,NW,...,w,l)T (3.77)
as (uo, - - - ,uTu,O,...,O,U_Tu,...,u_l)T . (3.78)

The vectors are zero-padded in the center such that they all have &nkjre

we remove the constraint that must be odd. Note, that the elements of the
sequence and those of the vectar, defined in (3.51), are arranged similarly in
ascending order. However, the elementg @indx are arranged in a different
manner. We use the following definition for the circular convolution of two
vectors

i=xew=wex2C (W) CX) (3.79)
=C(w)x=C(X)W (3.80)
whereC(.) andC~(.) are defined in (3.18) and (3.19), respectively. The def-
inition (3.79) requires a product of two matrices, whereas (3.80) uses only a
matrix-vector product. Extending both sides of (3.79) to a circulant matrix, and
using the definition®J = C(@), W 2 C(w), andX £ C(X), gives
C(a)=C(x®w) =C(W)C(x) (3.81)
U= WX. (3.82)

We see that the circular convolution of two vectors is isomorphic to the product
of two circulant matrices.
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As an example, constructing the circulant maf = C(w) with w de-
fined in (3.77), yields

T wy w_q w_pn, 0 0 wn, w7
w1 Wo
WN,,
W Ny, 0
~ 0
W =
0
0 wW— N,
W_N,,
Wo w_1
L w—l ... w—NW 0 ... 0 wNW ... wl wo i
(3.83)

Note, arranging the elements, in w as given in (3.77), causes the center
elementw to lie on the diagonal oW. This representation has the useful
property that the elements 6f 1 (W7) andC~!(W) are arranged in circular
time-reversed orde((W7) = J.C~ (W) wherel; is defined in (3.6).
This means that transposition of the filter maf¥i or the input-signal matrix
X causes a circular time reversal of the underlying filter or signal sequence,
respectively. This is equal to changindz) to w(z'). SinceX = C(X) is
built similarly to W, z lies on the diagonal oK. As a consequencé] =
WX will have u, on its main diagonal.

Circular convolution of three vectors Of course the circular convolution
operation can be extended straightforwardly to the circular convolution of three
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or more vectors

di=w®a®s=C*(C(w)C(a)C()) (3.84)

=C(w) C(a)s (3.85)

= C(C(W)a)s (3.86)

=C(C(C(w)a) C(3)) (3.87)

The circular convolution can be described in matrix form with the help of cir-
culant matrices as

U = WAS. (3.88)

To summarize, we have the following isomorphism

(2) = Pe (@(2) #(2))
®w2U=WX

1

[~3}

U=w®®T

U=WX. (3.89)

1
=1
1
1

M

Rearrangement of vector elements Forimplementation reasons, one is some-
times interested in rearranging the vector elements for a circular convolution,
e.0.w ® x. From (3.40) withrn =0 we have

i=wex=J"wel "x=w ®% (3.90)

which reveals that the output vect@remains unaffected if we rotate the ele-
ments ofw anti-clockwise and rotate the elementskatlockwise by the same
number, and vice versa. More generally, if we also want to rotate the elements
of the output vectofi, again from using (3.40) we have

A=w®x <= J"a=J""welJ "x <— d=wex.

with @ = J™ @, w = J"t" %, andx’ = J " %. Note thatJ " = (J*)Z.
Eq. (3.91) is a very powerful tool for algorithm design purposes.

3.2.3 Fast computation of the convolution

Fast computation of a circular convolution We now derive an efficient
method for computing a circular convolution via the product of two circulant
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matrices. Starting with (3.82), we apply the similarity transform givenin (3.21)
and obtain

FUF ! = FWF 'FXF ! (3.92)
U = WX. (3.93)

Eq. (3.93) is a product of two diagonal matrices which requires with
UI=WOX (3.94)

only C multiplications, where> denotes the element-wise multiplication of
two vectorsa = diag (U), w £ diag (W), andx = diag (X). By further
exploiting the computational efficiency of the FFT and IFFT, e+ Fx =
FFT(x), w = Fw = FFT(W), andia = F~1i = IFFT (i), we finally obtain

i =W ®% = IFFT (FFT (W) © FFT (%)) (3.95)

as a fast implementation of the circular convolution. The extension of (3.95) to
more than two vectors is straightforward, e.g., (3.84) is computed as

i = IFFT(FFT(W) ® FFT(a) ® FFT(8)) . (3.96)

Fast computation of a linear convolution From Section 3.2.2 we know that
the linear convolution of two sequences can be computed by the circular con-
volution with the appropriate lengtfl, e.g.,w(z)z(z) = Pc (w(z) z(z)) for

C > 2(Ix + Nw) + 1. Since with (3.95) there exists a fast algorithm for the
computation of the circular convolution, we automatically also have a fast al-
gorithm for the linear convolution. I < 2 (Tx + Ny) + 1, from (3.69) and
(3.73) we know that there aflg, = C — Ty — Ny — 1 elements ofi = w ® X
which coincide with those afi = w * x, see also Fig. 3.2.

3.3 Complex conjugation, time reversal, and cor-
relation

With linear time we mean thatoo > ¢, > oo and with circular time we mean
teirc = < tin >¢. With linear time reversalve understand the mapping —

—tin and withcircular time reversathe mappingcic = —tcirc = < —tiin >¢-

The relation between linear and circular time reversal is illustrated in Fig. 3.3.
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3.3.1 Linear time reversal

Time reversal of a sequence Let z = {z_gy,...,z7} be a sequence of
length2Ty+1. Withz = {z1,, ..., z_7, } we denote the time-reversed ordered
sequence. Furthermore, we defire = {a:iTX, .. .,az}x} and consequently
¥ = {:U}X, .. ,aziTX}.

Time reversal of a polynomial Thez-transform of a sequenaecan be writ-
ten as

z(z) =xTz=2"x (3.97)
X= (T g4y To,. . ap) (3.98)
zZ = (ZTX,...,Z,I,zfl...,ziTx)T. (3.99)

Complex conjugating both sides of (3.97) yields
2" (2) 2 (x(2))" = (x7) 2" =x"TJz = 2. (27) (3.100)

where we used* = Jz with J from (3.9) and

x* = (g, al e ah) (3.101)
7" = (z_TX,...,z_l,l,z...,zTX)T . (3.102)

We see that the filter coefficients are complex conjugate, and the filter is time
reversed. Furthermore, with(z~!) = x”z* andz.(2) £ (x*)" z we have
the following relations

N2
z(z) = Z Tpz " (3.103)
n=N1
N —N1
z(z7) = Z AR Z T_pz " (3.104)
n=N1 n=—N»
No
vo(2) = Y apz " (3.105)
n=N1
N> —Ni
z*(z) = Z it = Z * 2 = (7Y, (3.106)
n=N1 n=—N»

x(z~1) corresponds to a linear time reversalgt), in z.(z) the coefficients
of z(z) are complex conjugate, and(z) is the combination of both.
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Figure 3.3: Linear and circular time-reversal: (lefi)(z): x andx, (right)
z(z71): Ix andJ. x.

Time reversal of vector The elements of a vector are time reversed by
premultiplication with the exchange matrix, iBx.

Linear correlation Complex conjugation and time reversal play an important
role for the linear convolution operation. Letandw denote two sequences of
finite length. Sincev * x is a linear convolution, time reversing and complex
conjugation of one sequence yields a linear correlation, @9 x andw *

z*. Likewise,w*(z)z(z) andw(z)z*(z) are linear correlations described by
polynomials, andiw* x x andw x Jx* are linear correlations described by
vectors.

3.3.2 Circular time reversal

Circular time reversal of a sequence Let Z be a zero-centered sequence of
lengthC. The circular time reversal is equal to the linear time reversal.
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Circular time reversal of a polynomial Let

i Lo/2]
B(z) 2P (z(2) = > Eaz " (3.107)
n=—C/2]

thenz(2~1), #.(z), and%*(z) are defined similar to (3.104), (3.105), and
(3.106), respectively. Furthermore we have

E(z7) =Pc (z(z1)) (3.108)

which means, ifi(2) is built from a polynomiak:(z) = ZZ*:_TX x,z~ " with
2Ix+1> C, then it does not matter whether we first time rever&e) and
then applyPc (.) or if we first applyP¢ (.) and then time reversgz).

Circular time reversal of vector Letx be defined asin (3.76). The elements
of x are circular time reversed by premultiplication with the circulant exchange
matrix

Jex = (:Uo,a:,l,...,:U,TX,O,...,O,:UTX,...,azl)T . (3.109)

Circular time reversal of a circulant matrix ~ LetX = C(x). ThenC~!(XT)
returns a vector whose elements are circular time reversed, as in (3.109).

Circular correlation Complex conjugation and time reversal also play an
important role for the circular convolution operation. lieandw denote two
zero-centered sequences of len@thSincew®z is a circular convolution, time
reversmg and complex conjugation of a sequence yields a circular correlation,
e.g.,w* ® & orw * 7. Likewise Pc (w*(2) 2(2)) andPc (w(z) z*(2)) are
circular correlations described by polynomialsw* ® x andw ® J.x* are
circular correlations described by vectors, avd? X and WX* are circular
correlations described by circulant matric@sis defined in (3.6). Special case:
PO Ex®Ix 2 XX corresponds to a circular autocorrelation.
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Summary We have the following single-channel isomorphism

Pz =2Jx =XT (3.110)
I.(z) =% =X~ (3.111)
i*(z) = Jx* = XM (3.112)

3.4 Deconvolution

3.4.1 Linear deconvolution

Linear deconvolution of a sequence Let a be a given sequence. We define
the deconvolution of, such thatu x a=! = {...,0,1,0,...} = §(n) becomes

a zero-centered sequenceq lias finite lengthg —* has usually infinite length.
However, for practical applications we truncate' such thatP. (afl) *a R
{...,0,1,0,...}.

Linear deconvolution of a polynomial Leta(z) be the two sided-transform
of the sequence with ||a(z)|| » < co. With a~!(z) we denote thetablein-
verse ofa(z) such thata(z) a=*(z) = Land|a"(2)||, < co. We thereby
require that no roots af(z) lie on the unit circlea(e’*) # 0 for w € [, 7.
Note, stability can be exchanged with non-causality. wét) = a—!(z) and
a(z) be causal. Ifz(z) is minimum phaséall roots lie inside the unit circle),
thena™'(z) = 307, wpz™". If a(z) is maximum phasgall roots lie outside
the unit circle), them='(z) = .1 w,z~". If a(z) is mixed phaséthe

n=—oo

roots lie in- and outside the unit circle), then! (z) = Y277 w,z7".

n=—oo

3.4.2 Circular deconvolution

Circular deconvolution of a sequence Let
a={0,...,0,a_n,,---,a0,---,an,0,...,0}, (3.113)

be a zero-centered sequence of lengthThe circular deconvolution af is
defined such thai ® a=* = {...,0,1,0,...}, is also zero-centered. Note,
opposite taz ! in the linear deconvolutio;,~! is of finite lengthC.
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Circular deconvolution of a polynomial Let a(z) £ P (a(z)). From the
linear deconvolution we hawg(z) a=*(z) = 1 by definition. Therefore, with
(D.111),

Pe (a(z)a™(2)) = 1 (3.114)
Po (a(2) Pe (a7'(2))) = 1. (3.115)

We define the circular-deconvolution polynomial@s! (z) £ Pc (a=(z)).
Furthermore, from (D.115) we have

i\ (2) = P (a1 (2)) = P ((750 (a(z)))l) . (3.116)

If C is choserlarge enoughthena(z) ! is approximately equal to th€
center elements af (z), e.g.

a”'(z)  Po (a7 (2)) ~ Pc (a™'(z)) =a " (2). (3.117)

Circular deconvolution of a vector Let

~ A

a=(ag,.-.,an,,0,...,0,a_n,,- .- ,a_l)T (3.118)

be a vector of lengtli’. We define the circular deconvolution of a vecisuch
that

al®ma=e (3.119)

wheree; denotes the first unit vector. Extending both sides of (3.119) to a

circulant matrix similar to (3.81) we obtain

c(@athe@ =1 (3.120)
cat) = (@) (3.121)

and therefore
ataci(c@)™. (3.122)

In fact, (3.120) corresponds th*A = I and therefore we see thAt must
have full rank, which is true if the elements b%, the eigenvalues oA,
are non-zero. A fast implementation of (3.122), which is equaitd =

F-! (Fa)"") is given in [69, 71]
a~! = IFFT{(FFT{a}) ="} (3.123)

where(.)((-1) denotes the element-wise inversion of a vector.
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Summary We have the following single-channel isomorphism

ity =eiex) T =Xt (3.124)

3.5 Multichannel extension

We now extend the operators, described in the previous subsections for the
single-channel case, to the multichannel case. Since we have seen that many
linear-time operations can be efficiently implemented or approximated by the
corresponding circular-time operations, we will focus only on the extension of
the circular-time operations.

Roughly speaking, a polynomial is replaced by a polynomial matrix and a
circulant matrix is replaced by block-circulant matrix.

3.5.1 Multichannel convolution

This subsection is the multichannel extension of Section 3.2.

Multichannel linear convolution of two polynomial matrices Let

x(z) = i x;27" (3.125)
t=—o0
W(z) = i W,z ". (3.126)

be two Laurent-series or polynomial matrices. The multichannel linear convo-
lution is defined as

u(z) = W(z)x(z). (3.127)
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Multichannel circular convolution of two polynomial matrices Let

%(z2) = Y xez ! (3.128)
t=—"Tx
Ny

W)= Y Wz n (3.129)
n=— Ny

The multichannel circular convolution is defined as
(z) = Pe (W(z)fc(z)) . (3.130)

Similar to the single-channel case described in Section 3.2.2, we distinguish
between three different cases depending’oiv,,, and7x.

Multichannel circular convolution with block circulant matrices Let
XMEXC = [X,.] = [C(&p)] andWMEXME — W, 1 = [C(W,n,)] bE two
block circulant matrices. We can define the multichannel circular convolution
as

U=WX (3.131)

whereUMxC = [U,,] = [C(@,,)] is also a block circulant matrix. Pre-
and post-multiplying (3.131) witd'y; andT; !, whereT);, is defined in (3.7),
yields

Ty UT;! = Ty WT;, Ty XT; (3.132)
U=WX (3.133)

whereU = Ty, UT;!, X = Ty XT;!, andW = TMVTTTA}1 are all block
diagonal matrices, see Section 3.1.7.

We now analyze the computational complexity of (3.131) and (3.133). The
direct computation of (3.131) requireg?C* multiplications andM*C? —
M C* additions. SincdJ is a block circulant matrix, it suffices to compute only
the first row ofU, because the remainirfg — 1 rows are only permutations of
the first row. Therefore, the computation reducestdC? multiplications and
M?C? — MC additions. However, the computation of (3.133), the product of
two block diagonal matrices, requires orly?C' multiplications andi/2C —
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M C additions. This is about an order of magnitude lower than with (3.131), as
we usually hav&’ > M. In addition, we need/ FFTs for the computation of

X, M IFFTs forU, andM? FFTs forW, if W is not already available in the
frequency domain. Since the complexity of an FFT / IFFT is alioidg C,
which grows lower tha@'?, it is still worthwhile to take (3.133) for large values

of C.

Summary We have the following isomorphism

cl

ii(z) = Pe (W(z)sc(z)) >~ U=WX 2 U=WX. (3.134)

3.5.2 Complex conjugation, time reversal, and correlation

This subsection is the multichannel extension of Section 3.3.

Polynomial matrices Let

N>
=) X,z (3.135)

n=N;

be a polynomial matrix or a matrix polynomial. We then have the following
relations

N> —N1
H=) Xeetr= ) X (3.136)

n=N;
N»

X.(2)= Y X" (3.137)
n=N;
N> —N1

X*(z)= Y Xpztm= ) X',z =X, (27 (3.138)
n=N; n=—N»
N2

XT(z)= > XFz" (3.139)
n=N1
Ns —N1

XH(z)= > XHetn= Y XH o =XT (7). (3.140)
n=N1 n=—Nz
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Block circulant matrices LetN)NCMCXNC = [Xmn] =[C (Xnn)] be a block
circulant matrix. We then havk” = [X7 ] = [C ( JeZnm)], X* = [X2,] =
[C(%n))s andXH = [XF ] = [C(TeX,,)]-

Circular correlation Let W(z) andX(z) be two polynomial matrices, and
W andX be two block circulant matrices, wheW (z) = W andX(z) = X.
ThenP¢ (WH(z) (z)) ~ WHX anch( (2) XH(z)) ~ WXH are
circular correlations described by polynomial matrices and block circulant ma-
trices, respectively, if the products exist. The special a%wéfc(z) XH (z)) ~

XXH corresponds to a circular autocorrelation.

3.5.3 Multichannel deconvolution

This subsection is the multichannel extension of Section 3.4.

Multichannel linear deconvolution of a polynomial matrix Let A(z) be a
square polynomial matrix witlﬂA( )|l < co. With A~!(z) we denote the
stableinverse ofA(z), i.e. |A™!(z)|| . < oo, such thatA(z2)A™'(z) = L

We require that no roots afet A(z ) lie on the unit circle, i.edet A(e?¥) # 0

for w € [—m, w]. Depending on the roots dkt A(z), we can also distinguish
between a minimum-, maximum-, or mixed-phase system, just as for a polyno-
mial.

If A(z) is arectangular matrix, we can define in a similar way the Moore-
Penrose pseudoinverae” (z).

Multichannel circular deconvolution of a polynomial matrix LetA(z) &
Pc (A(z)) be a square polynomial matrix. From the multichannel linear de-
convolution we have\ (z) A~1(z) = I by definition. Therefore, with (D.111),

Po (A(z) A7 (2)) =1 (3.141)
Po (A(z) Pe (A*l(z))) =1. (3.142)
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We defineA~1(z) £ P (A~1(z)) to be the circular-deconvolution polyno-
mial matrix. Furthermore, from (D.115) we have

A~'(z) =P (A7'(2)) = Pe ((75c (A(z)))_1> . (3.143)

If C'is choserarge enoughthen

A7'(z) mPe (A71(2))  Po (A71(2)) = A7 (2). (3.144)

Circular deconvolution of a block circulant matrix ~ LetA(z) £ Pe (A(z))
be anM x M polynomial matrix andA be anM/ C' x M C block circulant ma-
trix, with A,,.., = [A]mn = C(&mn), and

Amn = (@mno, - G Nay 0+« 3 0, Qo Ny » -+ ,amn,,l)T (3.145)
containing the coefficients ¢A (z)],,,,. We then have the isomorphism

A7(2) 2 Po (A7 (z)) = AL, (3.146)

Fast inversion of a block circulant matrix We can decompose the block
circulant matrixA into

A=T, ATy (3.147)
[Aln = diag (F~ &) (3.148)

whereA is a block diagonal matrix an,; is defined in (3.7). From (3.147)
we then have

A=TyAT; (3.149)
[Almn = diag (F am,) - (3.150)

Inverting both sides of (3.147) yields
Al=T, A Ty. (3.151)

From (3.148), (3.150), and (3.151) we see, that the inversion of the block cir-
culant matrixA can be done byw/2? FFTs, M? IFFTs, and an inversion of a
block diagonal matriXA.. There exist fast algorithms to invert a block diagonal
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matrix, which require onlyC’ matrix inversions of a/ x M matrix. This is

due to the sparseness of a block diagonal matrix and bed@auses again a
block diagonal matrix with only/2C non-zero elements.

If A(z) £ Po (A(z)) isanM x N rectangular polynomial matrix, we can
proceed in a similar way, i.€c (X #(z)) = X #.

3.6 Summary

In the limit whereC' goes towards infinity, all the operations in the circular
time domain coincide with those in the linear time domain, e.g., convolution,
deconvolution, correlation, time reversal, etc. Actually, many operations can be
implemented more efficiently in the circular time domain, for instance circular
convolution with the help of the FFT / IFFT. Other operations are inherently
less complex in their computation. For example for the circular deconvolu-
tion we have to compute only a finite number of elements, whereas the linear
deconvolution requires in general an infinite number.

For practical applications, however, it is mostly sufficient if the operations
in the linear time domain are well approximated. Therefore, if in the circular
time domairC' is choserdarge enoughthe operations in the linear time domain
can be sulfficiently well approximated.

Circulant and block circulant matrices have shown to be very useful for the
computation of many operations which appear in multichannel signal process-
ing, not only because of the isomorphic mapping between polynomial matrices
and block circulant matrices, but also because of their interesting properties re-
lated to Linear Algebra. Block circulant matrices are also very closely related to
FIR matrices, within an FIR-matrix algebra, as pointed out by Lambert [69, 71].

A summary of single-channel and multichannel isomorphisms between poly-
nomial matrices and (block) circulant matrices are givenin Fig. 3.1 and Fig. 3.2,
respectively.
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operation polynomials circulant diagonal

matrices matrices
w(z) w W=FWF~!
time reversal w(z71) w7 JeW I,
complex conjugation w, (2) w* J.W* I,
w*(2) = w.(z71) wH W+
circ. inversion Pe (w™i(z)) w-! w-!
circ. convolution Po (w(z) z(z) ) W X WX

Table 3.1: Isomorphic mapping — single-channel case.
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polynomials block circulant block diagonal
matrices matrices
W(2) W=[W,.] | W=10F)W(IxF1)
W(z1) [WT I2J)W (A2 J)
W(2) (W] w
W.(2) W+ I0J)W I
WH () =W () | WH=[WH,] w
W7 (21 WT=[WT I2I)W' (I2J)
W.(z71) (W] W
W (2) (W] M2l W' IeX)
Po (W(2)) w! W
Po (WH#(2)) W w"
Po (W(z) x(2)) WX WX

Table 3.2: Isomorphic mapping — multichannel case.



Chapter 4

Single-channel identification
and inverse modeling

For a single-input system, system identification and inverse modeling of an
instantaneous mixing system, described in Chapter 1, degenerates to a single-
channel gain and inverse-gain estimation. We analyze this problem in more
detail, as this is also the most simple case of a single-channel system identi-
fication and also of inverse modeling of an FIR filter. We thereby investigate
three different learning concepts for the adaptation, namely online, batch (off
line), and block-wise learning. Afterwards, we extend these concepts to the
case where the unknown system consists of an FIR filter.

Usually, the assumption is made that the multichannel filtefs), H(z),
W (z), and also the signal vectoséz), x(z), x(z), andu(z) are described by
two-sided Laurent series with infinitely many terms, e.g.

a(z) = i apz ", (4.1)

k=—oc0

As an example we choose the LMS1-Hx, whose update equation for the iden-
tification of a mixing matrix is given b, = H; + usex;s. The natural
extension of the problem is to replage by A(z), which is referred to as a
convolutive mixingf the source signals. Intuitively, we expect the extension
of the update equation to becoHg 1 (z) = Hy,(2) + prexy(2)s(z), where
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88 Chapter 4. Single-channel identification and inverse modeling

sf(z) = s.(271) andk denotes the iteration index. In other words, every ma-
trix and vector in the system model or update equation is replaced by a poly-
nomial matrix. In reality, however, we deal with filters and time series of finite
length and we do not exactly know, if this simple extension still holds, and if
not, how we have to modify the update equations.

The use of the polynomial projection operafo(.), defined in Appendix
D.2, allows a compact description of the system and the update equations. The
equations can then be easily transformed into a matrix / vector notation (iso-
morphism), which is more convenient for an implementation. Since we as-
sume long filters, which is common in acoustical signal processing, the time-
consuming convolution can be carried out in the frequency domain by exploit-
ing the efficiency of the so-called fast convolution.

In this chapter we derive the basic framework for single-channel system
identification and inverse modeling of an FIR filter, based on overlap-save tech-
niques. The update equations are derived from those of Chapter 2 and are sum-
marized in Table E.5 and Table E.9. It is interesting to see that many of them
are related to known algorithms for single-channel blind deconvolution.

4.1 Identification of an unknown gain

Before we start to analyze the general single-channel case, where the unknown
system is modeled as an FIR filter, we analyze the most simple system, namely
one described by a simple complex gain. We introduce the use of the polyno-
mial projection operator defined in Appendix D.2 to describe the system model
and to derive the update equations.

41.1 Model

In the single-channel case, we can describe the unknown system by a complex
scalara. The known input sequence is described by its two-sidé@nsform

s(z) = Z spz (4.2)

4.1. ldentification of an unknown gain 89

where the length of the input sequenc@is + 1. The input-output behavior is
then described by

zp = as; +ny = 2" Py (as(z) +n(z)) 4.3)
T Tx
z(z) = Z T2t = Z Pyt (as(z) +n(z)) (4.4)
t=—"1x t=—"1Tx
= P_1,1, (as(z) + n(z)) (4.5)

wherez(z) is the known output sequence of finite leng#y + 1 andn(z) is the
sensor noise. Note that we define the observation time to be symmetric around
the time origin, i.e. from-T to +7%x. We allow thatTy # Ts, however, we
require thafls > Ty. P (.) denotes the polynomial projection operator defined

in Appendix D.2.

We give three different methods to identify the unknown gain(i) an
online learning algorithm, where the update is carried out sample by sample,
(i) a batch algorithm, where the update depends on the estimation error of
the whole data sequence, and (iii) a block-wise algorithm, where the update is
carried out block wise.

4.1.2 Online learning algorithm

With an online learning algorithm we process the estimation and adaptation on
a sample rate basis. Lkt= a denote the estimation af We then have

ii”t = htst = Zt Pt,t (htSt) (46)
and the estimation error
Ext £ Ty — Tt . 4.7)

For the update at discrete timave aim at minimizingey,|?. As an example,
if we use LMS1-Hx we have

hit1 = he + pexys; (4.8)
=y + pPry (ex(2)) Pry (s(2)) (4.9)
=he + uPop (exsz 5% (2)) (4.10)
= Poo (bt + pexez 's*(2)) (4.11)

where we use®; ; (ex(z)) = ex;z~", P, (s(2)) = sfz™t, andPoo (hs) =
h:. Other update equations for gain identification are given in Table E.4.
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4.1.3 Batch learning algorithm 4.1.4 Block-wise learning algorithm
With a batch learning algorithm we use the estimation error of the whole data We now modify the system model slightly such that the input, the noise, and the
sequence for the updateof= a. Let k denote the iteration index. At iteration output sequence have infinite length. The system output is still given by
k, the estimation sequendg(z) is as; + ng. We partition the output sequence into consecutive, non-overlapping
blocks of block lengthl, = 27+ 1 samples. Withk we denote the block index.
Eop = hisy = 28 Poy (hesy) (4.12) We can then describe the output sequence(as= Y~ zx(z)z~*" with
T,
T,
b(z) 2 By ozt 4.13 - -
(&) & D dar (4.13) B2 S w2 P, () () (422)
- t=—Tx
= P_q., 1 (hs(z)) (4.14)
where
and the estimation error sequengg(z) is o
A sp(z) & skLit? L =Pomm, 2 s(2) (4.23)
exik = Ty — By, (4.15) t:z_:TS ( )
1
exp(2) 2 Z expp? ! (4.16) is the input sequence of bloékand
t=—"1x Tx
=x(2) — Tx(2). (4.17) ng(2) S Z Nrpit 2 L= P_n 13, (z“’ n(z)) (4.24)
t=—Tx
At iterationk we wish to minimizd|ex,c(z)||2f where the nornjl || - is defined i i - ChL
in (C.18). Batch learning is equal to averaging the update over the whole data is the noise seque(r;oce of blogk Note, we havez(_z) =D hmoo Mk (2) 277,
sequence of, = 2T} + 1 samples. As an example, if we use LMS1-Hx and howevers(z) = 3272 sk(z) 2" is only true if Ts = Ty. Usually we have
average the update (4.8) over the whole sequence, we get Ts > Tx. Analogously, we can partition the estimation sequence(as =
> he_ o Zr(2)z~ L where at block: we have
T,
hiy1 = hy + 2Tu+ 0 Z Ext kSt (4.18) Tep = hise = 28 Py (his(z)) (4.25)
X =—1Ix TX
Tx a%k(z) e Z Thi+t kz_t =P_rn.m (hksk(z)) . (4.26)
_ l’l’ * B X>4Lx,
=t g g O Pulal) P (49 )
M " X Accordingly, the estimation error sequence can be written as
= hk + mpmo (exk(Z)S (Z)) (420) €X(Z) — Zz‘;ioo €xk(Z)Z_kL with
Iz . 7
="Poo (hk + ———exp(2)s (z)> (4.21) x
2T'X + ]- €xk(2) é Z €ka+t’kZ_t (427)
t=—Tx
where we used (D.43P_1, 1, (exi(2)) = exx(2), andPy o (hy) = hy. Other = 24(2) — #0(2) (4.28)

batch learning algorithms can be derived with Table E.4, analogously to LMS1-
HXx. =P_n.1, ([a — hi]sk(z) + ng(2)) . (4.29)
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The update is performed at the block rate, where in bloeke aim at mini-
mizing ||ex,c(z)||2f. This is equal to averaging the update over a whole block of
L = 2T, + 1 samples. As an example, if we use LMS1-Hx we have

1 kL+Tx
hk+1 = h/k + m Z Ex¢S¢ (430)
t=kL—Tx
[ kL+T
= he+ 550 > P (ex(2)2 ) Py (se(2)2 %) (4.31)
t=kL—Tx
0 =
=het or t; Prt (exk(2)) Pre (s1(2) (4.32)
0 .
= hk + mpmo (exk(Z)Sk(Z)) (433)
_ n .
="Po,0 (hk + ST+ 1exk(z)5k(z)> (4.34)

Other block-wise learning algorithms can be derived analogously to LMS1-Hx
with the sample-wise update equations of Table E.4.

The block-wise learning algorithm is different from the batch algorithm in
the sense that instead of using the same input blo2Kpf 1 samples for every
iteration, a new input block witR7y + 1 samples is taken for every iteration.
Furthermore, by settingy to zero (L = 1) the block-wise learning algorithm
degenerates to the online learning algorithm of Section 4.1.2.

4.2 Single-channel identification

We now extend the model of the unknown single-channel system from being
an unknown gaim to an FIR filtera(z), see Fig. 4.1.
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St

Figure 4.1: Single-channel identification. The filtéx(z) is adapted such that
h(z) = a(z).

421 Model

For the single-channel case, we can describe the unknown system by a single
polynomial, the two sided-transform

a(z) = Z anz"". (4.35)

n=—N,

With this definition, we allow the system to be non-causala@s also has
positive powers ot. For a causal system we hawe; = --- = a_n, = 0,
or P_n, -1 (a(z)) = 0. The known input sequenc€z) is given in (4.2). The
input-output behavior is then described by

zy = 2" Pyy (a(2)s(2) +n(z2)) (4.36)
Tx
2(z) 2 Y mzt =Py (al2)s(2) + n(2)) (4.37)
t=—"1Tx

wherez(z) is the output sequence of finite leng?fiy + 1 andn(z) is the
sensor-noise sequence. The description is similar to the one in Section 4.1.1
except that: is replaced by:(z).

The error criterion which we aim at minimizing is

E {lex|*} = lla(z) = he(2) |5 0% + o (4.38)
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with o2 £ E{|s;[*}, 02 £ E{|n¢|*}, and the assumption thafz) and
n(z) are uncorrelated, i.gs(z),n(z)) = 0. This is equal to minimizing

lla(z) = he(2)]I5-

Just as in Section 4.1, we now describe an online, a batch, and a block-wise
learning algorithm for identification, with the extension, that an FIR filter is
adapted.

4.2.2 Online learning algorithm

With an online learning algorithm we process the estimation and adaptation at
the sample rate. Lét(z) = a(z) denote the estimation af(z)

Np
hz) & Y hpz™" (4.39)
TL——Nh
with IV, < N,. We then have
.’Ié‘t = Zt Pt,t (ht(Z)S(Z)) (440)

whereh;(z) is the estimate of(z) at timet and
ext = T — &4 (4.41)

is the corresponding estimation error at discrete tim€or the update atwe
aim at minimizingley,|?. As an example, if we use LMS1-Hx we have

hntrr = ot + pexs;_, (4.42)
hiv1(2) = he(2) + Py (ex(2)) Pronpitn. (5(2)) (4.43)
= hi(2) + P NN, (exiz 5% (2)) (4.44)

=P nunn (Be(2) + pexpz's*(2)) (4.45)

where we use®_n;, n, (h+(2)) = h:(z). Other update equations for single-
channel identification can be derived from Table E.4.

4.2.3 Batch learning algorithm

With a batch learning algorithm we use the estimation error of the whole data
sequence for the update bfz) = a(z). Letk denote the iteration index. At
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iterationk, the estimation sequenég(z) is

Eep = 2" Prg (hi(2)s(2)) (4.46)
Tx
Ty, (Z) e Z ;i‘t7kz_t = P_TX7TX (hk(z)s(z)) . (4.47)
t=—"1x

The linear convolution (4.47) is illustrated in Fig. 4.2 (top). The estimation
error sequence,(z) is

exen = Ty — Bt (4.48)
T
ex(2) = Z ext kz | (4.49)
t=—"1x
= z(z) — &r(2) (4.50)
=P_up.1, ([a(z) — hi(2)] s(2) + n(z)) . (4.51)

At iteration k£ we wish to minimiz<ﬂ|ex,c(z)||2f. This is equal to averaging the
update over the whole data sequencBf+ 1 samples. As an example, if we
use LMS1-Hx we have

Tx
i = b+ gt D extsin (452)
t=—"1Tx
1 Nn Ty
M (2) = () 4 gl D0 3 P (anls)) i (0
n=—Nnt=—1Tx
(4.53)
[0 =
= hi(z) + > Pri(exk(2) Pinperns (5(2)) (4.54)
27y + 1 Nt
= ,P*Nh,Nh <hk(2’) + ﬁeXk(z)s*(z)> . (455)
X

where we used (D.54W_1, 1, (exi(2)) = exi(2), andP_n, n, (hi(2)) =
hi(z) in the last step. We require th@ > Ty + Ny. Other update equations
for a batch learning algorithm can be derived with Table E.4, analogously to
LMS1-Hx.
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linear convolution

S-1, So St
*
h_n, ho h,
Il
X_1,- N, X T4 N, Xo X7,-N, X140,
X1 4N, Xo X7,— N,

circular convolution

X_1y— N, RoTiN, Xp R, Ny, RT,4 Ny,

X TNy Xo X1,— Ny,

T Jdata [ Jzeros

Figure 4.2: Batch learning algorithmily =75 — Ny, C' > 2 (Ts + Np) + 1):
(top) linear convolutiort(z) = P_x, 1, (h(2) s(z)), (bottom) cir-

cular convolutioni(z) = P_r, 1, (750 (h(z) s(z))).

(2]

>
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4.2.4 Block-wise learning algorithm

s(z)

Sk11(2)

=
|
~

% Xp.—1(2) :
V% /)

% Xp41(2) %

Xj—1(Z) Xi(2) Xje+1(2) ‘

‘ ‘ data ‘ ‘ 7eros W////M wrap-around effects

Figure 4.3: Overlap-save technique. The output sequence is partitioned into
non-overlapping blocks.

We change the system model slightly such that the input, the noise, and the
output sequence have infinite length. The system output is still given by
Pt (a(2)s(z) + n(z)). We now apply the overlap-save technique [84], where
the output sequence is partitioned into consecutive, non-overlapping blocks of
lengthL = 2T% + 1, as shown in Fig. 4.3. Witk we denote the block index.
We can then describe the output sequence(as= > 7 __ x(z)z~* with
T

oe(2) £ Y wppprt = Pogn, (a(2)sk(2) + ni(2)) (4.56)
=T,

where s, (z) and ny(z) are defined in (4.23) and (4.24). According to the
overlap-save technique [84], we require thgt> Ty + N,. Therefore two
consecutive input blocks,_; (z) ands(z) overlap. We can partition the esti-
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mation sequence asz) = Y - _ _ £,(z)z—*~ where at block we have

Frp = 2" Py (hie(2)s8(2)) (4.57)
Tx
Ee(2) 2 Y drprrnz L =Pogn, (he(2)sk(2)) - (4.58)
t=—Tx

Accordingly, the estimation error sequence can be written as
ex(z) = S pe o exi(2)zFE with

T,
ex(2) = Z exkL it h? (4.59)
t=—"Tx
= wp(2) — 2k (2) (4.60)
= P_n,1, ([a(2) — hi(2)]sk(2) + ni(2)) - (4.61)

The update is proceeded at the block rate, where in bloale aim at mini-
mizing ||ex,c(z)||2f. This is equal to averaging the update over a whole block of
L = 2T, + 1 samples. As an example, if we use LMS1-Hx we have

kL+1Tx

Iz .
Pt = hog + n 4.62
1 k 2TX+1t:kzL:—Tx Ext St (4.62)
7 &
Pt (2) = hie(@) + 57 D Poe (exn(2) Py e (51(2)) (4.63)
t=—"Tx
= P <hk(z) n ﬁem(z)s;(zﬁ . (4.64)

Note the similarity between (4.64) and (4.55). Other block-wise learning algo-
rithms can be derived analogously to LMS1-Hx with the sample-wise update
equations of Table E.4.

4.2.5 Some remarks

The block-wise learning algorithm s related to the batch learning algorithm, but
instead of using the same block 2ify + 1 samples for every iteration, a new
input block with27y + 1 samples is chosen for every iteration. Furthermore,
by settingTy to zero (L = 1) the block-wise learning algorithm degenerates to
an online learning algorithm.
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With N, = 1 and N, = 1 the model and the algorithms described in this
section reduce to those in Section 4.1. We first focused on this most simple
case, because it already shows some fundamental concepts and introduces the
mathematical formulation in a simple way.

4.2.6 Identification of a causal system

In a first step, we treat a causal system as a special case of a non-causal sys-
tem. By making only minor changes in the system description and in the update
equation, we obtain almost the same algorithms as in previous sections. The un-
known causal system(z) and the corresponding estimatib(x) are described

by

Na

a(z) £ Z anz " (4.65)
’n]\:rho

h(z) &) hpz™". (4.66)
n=0

The system output(z), the estimationi(z), and the error signad(z) are
derived analogously to the non-causal system. Minor changes are made in the
update equations, namely in the parameters of the projection operator, and we
use again the LMS1-Hx for demonstration. The update equations of the online
learning algorithm given in Section 4.2.2 become

hi41(2) = hi(2) + (Pes (ex(2)) Pi i1 (3(2)) (4.67)
= Po,Ny (he(2) + pexrz's™(2)) (4.68)

those of the batch algorithm from Section 4.2.3 change to

Tx
hi+1(z) = hi(2) + 2Tu+ 1 Z Pt (exi(2)) Pi_n,1 (5(2))  (4.69)
X t=—"1Tx
= Po,n, <hk(z) + ﬁexk(z)S*(zﬁ (4.70)
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and those of the block-wise learning algorithm from Section 4.2.4 become

kL+Tx
Bt () = he(2) b gty D0 Pee (M eal2) Py (su(2)
t=kL—Tx
(4.71)
= Po,n, (hk(z) + ﬁex,c(z)s};(z)) . (4.72)
X

In these steps, we have essentially omitted the computation of the update of the
non-causal filter part.

4.2.7 Extension to circular convolution

We now wish to consider the case where long filters are involved. Since the
filter operation is a linear convolution, we are interested in an efficient imple-
mentation of the linear convolution. From Section 3.2.3 we know that there
exists a fast implementation of the circular convolution by using the FFT. We
also know that every linear convolution can be carried out by a circular convo-
lution of appropriate size. Therefore we modify the filter and update equations
such that we can apply a circular convolution, and find the necessary conditions.

Batch learning algorithm

Non-causal system We consider the learning algorithm of Section 4.2.3, where
a non-causal filter is estimated. At iteratibnthe estimation sequendg(z)
is given in (4.47). We carry out the following modification

Tk (2) = Pom, 1, (hi(2)s(2)) (4.73)
=P-n,1, (750 (hk(z)s(z))) (4.74)

With the help of the circular projection operatBr(.), defined in Section D.2,
we have actually included the computation of a circular convolution. Equality
holds if

C>2Ts+1>2(Tx+ Nn) +1 (4.75)
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where the inequality on the right guarantees that every elemeni(oj is free

from boundary effects, e.gi; is a sum o2V, + 1 elements, and the inequality
on the left guarantees that at least #%& + 1 center elements of the circu-
lar convolutionP¢ (hy(z)s(z)) coincide with those of the linear convolution
hi(z)s(z). The circular convolution (4.74) is illustrated in Fig. 4.2 (bottom).

We can proceed the same way for the update equations. Again we use
LMS1-Hx as an example. Starting With (4.55), we carry out the following
modification

_r
2T + 1

ﬁp_Nh,Nh (750 (exk(z)S*(z))) (477)

hit1(2) = ha(2) + P, (exi (2)57(2)) (4.76)

= hg(z) +

which holds for (4.75), just as for the filtering in (4.74).

Causal system In case of a causal system, (4.75) changes to
C>2Ts+1>Ts+Tx+ Nn+1 (4.78)

which means that for the same FFT s@ZeL = Ts + Tx + 1 output elements
coincide with the linear convolution, as opposed to the non-causal case where
we havel = 2T + 1.

Some algorithms have more than one convolution in their update equation.
If the same technique is applied, where a circular convolution is incorporated
into the update equations, the corresponding FFT Gizetually depends on
the length of all sequences which are involved in the convolution. However, if
Ty is at least as large a$y, the error of the wrap-around effect of the circular
convolution harms the estimatidi{z) only slightly, especially when(z) is a
white signal.

Block-wise learning algorithm

As already mentioned in Section 4.2.5, the difference between a batch and
block-wise learning algorithm is basically whether the update iterations are
done with the same, or with new input data. Therefore we can do the same
modifications for a block-wise learning algorithm, as for the batch algorithm,
described in the previous section. By simply substitutipg) in place ofs(z)
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in (4.74) and (4.77), we obtain the filtering and update equations of LMS1-Hx,
wherek now denotes the block index. The same constraints (4.75) and (4.78)
for C hold.

4.3 Efficientimplementation of single-channel sys-
tem identification by transformation into the
frequency domain

In the following, we are interested in computationally efficient implementa-
tions of the concepts described in Section 4.2.7. To this end, we transform the
filtering and the update of the filter coefficients into the frequency domain.

4.3.1 Online learning algorithm

Usually, for an online learning algorithm, with adaptation being carried out at
the sample rate, the filtering and the adaptation remain in the time domain.
However, it might still be worth carrying out the adaptation in the frequency
domain (or more generally, theansform domaihif the autocorrelation ma-

trix of the input signak has a large eigenvalue spread, which slows down the
convergence rate. The DFT tends to decorrelate the input signal for a large
DFT lengthC and therefore a bin-wise step-size normalization can be applied
to speed up the convergence [77].

4.3.2 Batch learning algorithm

The whole batch learning algorithm for system identification is given on page
104 from (4.80) to (4.95). Since we have all data available, we can adapt a
non-causal filter.

The following comments can be made:
e In (4.80), the constraint on the minimum size of the number of input

sample27Ts + 1 is given for the case where we ha2@} + 1 output
samples and where we wish to adapi, + 1 filter coefficients. If the
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number of input samples is limited, we can also read (4.805as<

Ts— Nn. We then see that onB(7s — Ny) + 1 output samples should be
used to build the estimation error. The constraint on the minimum FFT
size isC' > 215 + 1 and guarantees that the output samples;irare
free of wrap-around effects stemming from the circular convolution. The
FFT sizeC' can be even and is usually chosen to be a power of two.

e The initial settings(k = 0) for the algorithm are given from (4.82) to
(4.87). Note that the elements with index zero are arranged to be the
first elements of the time-domain vectors. From there, the causal part
(or samples from the future) is located in the first elements of the vector,
whereas the non-causal part (or samples from the past) is located at the
end of the vectors. This makes it easy to transform the filter and update
equations, derived in thedomain, into the domain of circulant matrices,
with the isomorphic mapping(z) =Pc (h(z)s(z)) = X =HS =~ X =
HS.

¢ In (4.88), we define the projection matrix

INhJ,-l 0 0 xC
Pp,=FP_nnNF '=F 0 0 o0 |F! (4.79)
0 0 Iy

which is used in (4.95) to reset the center elemeniﬁkqfl to zero af-

ter every update. This is the same technique which is widely known in
frequency-domain adaptive filtering [36,9@1_%7% is defined accord-

ing to (3.12). Sometimes thiiter projection operations omitted to
reduce the computational complexity of the algorithm. The price for this
is that the output signal is disturbed by wrap-around effects of the circular
convolution. However, simulations have shown that the filter projection
operation (4.95) helps for a faster and more smooth convergence of the
algorithm. A good compromise is to carry out projection operations once
every few blocks.

o In (4.89), the filtering (convolutior®c: (h (2)s(z)) = HyS, with Hy =
C(hy) andS = C(8), is carried out in the frequency domain. In (4.90)
the 27y + 1 elements which belong to the linear convolutidg(z) =

P_1, 13 (750 (hk(z)s(z))) are extracted, as seen in (4.91).
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Batch learning algorithm for SISO system identification
Definitions and initializatior{k = 0):

L=2Ty+1

X = (;vo,...,;UTX,O,...,O,x_TX,...,x_l)T
X = diag [F x]

s = (so,...,STS,O,...,O,S,Ts,...,s,l)T
S = diag [F §]

ho = (ho, ..., by, 0,0, ey - By
I:IO = dlag |:F flo]
P; =FP y, N F!

For every iteratiork = 1,2, 3,.. ..

1. Filtering:

2. Adaptation error:

&y, = % — u

Exk - diag [F éxk]
3. Update equations:

[ w+1 = any update equation from Table E.5
Hj, = diag [Py diag (Hj )]

(4.80)
(4.81)

(4.82)
(4.83)

(4.84)
(4.85)

(4.86)
(4.87)
(4.88)

(4.89)
(4.90)
(4.91)

(4.92)
(4.93)

4.4
(4.95)

4)
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Block-wise learning algorithm for SISO system identification
Definitions and initializatior{k = 0):
L=Ts+Tx+1 (4.97)
ho = (ho, ..., hn,,0,...,0)" (4.98)
H, = diag [F ﬁo] (4.99)
P; =FPy, F! (4.100)
For every blockk = 1,2,3,...:
1. Filtering:
% = (ThL,- - LT Oy o, 0,8k~ Ty - -, ThL—1) (4.101)
Xk; = diag [F ik] (4102)
§k = (SkL, ey SkLJrTS,O; e ,0, SKL—Tsy -+ Skal)T (4103)
Sy = diag [F 5] (4.104)
f(k —[,S, (4.105)
% = P_p 1, F~' diag (ik) (4.106)
= (:i'kL, e ,:IAZICL+T57 0, ey 0, ikL*Tx, e ,:%kal)T (4107)
2. Adaptation error:
&, = X — Xp (4.108)
Exk = diag [F éxk] (4.109)
3. Update equations:
H w+1 = any update equation from Table E.5 (4.11
Hj, = diag [Py diag (H}, )] (4.111)

0)
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e In (4.92), we build the adaptation error in the time domain agd =
exk(2) consists ofL. = 2Ty + 1 non-zero elements. In (4.93) the error
vectore,, is transformed into the frequency domain, where it is used for
the update.

e Any update equation listed in Table E.5 can be used for the adaptation.
The RLS-type algorithms additionally require the update of a correlation
matrix, which is also carried out in the frequency domain. As mentioned
above, (4.95) constrains the center elements,ofo be zero after every
adaptation.

4.3.3 Block-wise learning algorithm

The whole block-wise learning algorithm for system identification is given on
page 105 from (4.96) to (4.111). Conceptually, the block-wise and batch learn-
ing algorithm are almost equal, except that we now adapt a causahfiligr

The following comments can be made:

¢ In contrast to the batch algorithm where we adapted a non-causal filter
of length2 Ny, + 1, we now adapt a causal filter of lenghy, + 1. If we
use the same FFT lengtt as for the batch algorithm, we can choose
a larger block length., as given in (4.97). We also see from (4.108),
(4.101), (4.106), and (4.107), that= Ts + Tx + 1 output samples are
now used to build the block estimation error.

e In (4.100), we define the projection matrix

CxC

e (4.112)

0 0

. In+1 O
P, =FPynN,F'=F

which is used in (4.111) to zero pzfqﬂ after every update. Note the
difference between (4.100) and (4.88).

e Ifwe use the LMS1-Hx for the update and choGse- 275+1, the block-
wise learning algorithm is equivalent to the one proposed by Ferrara in
[36, 37], except for a permuted arrangement of the elements.
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e Any update equation listed in Table E.5 can be used for the adaptation.
The RLS-type algorithms additionally require the update of a correlation
matrix.

4.4 Single-channel inverse modeling

Ny

> az) aé—»xt

7—d

Figure 4.4: Causal realization of single-channel equalization. The causal filter
w(z) is adapted such that(z) = wi(2)a(z) ~ 2~ The de-
lay of d samples allows the inclusion of the non-causal part of the
expansion of;=1(z).

The setup of inverse modeling, inverse-system identification, or system
equalization is shown in Fig. 4.4. The model is the same as described in Sec-
tion 4.2.1, where the unknown filter is allowed to be non-causal. The global
system response is

gi(2) = wi(z)a(z). (4.113)
The error criterion which we aim at minimizing is
E{les”} = It = g:(2)15 02 + llwe ()15 o (4.114)

wheres(z) andn(z) are assumed to be uncorrelated, {€z),n(z))» = 0,
ando? £ E {|s;|*} ando? £ E {|n:|*}. In the noise-free case, this is equal
to minimizing ||1 — g;(z)|| , which gives thezero-forcingsolutionw(z) =

a t(z).

Just as in Section 4.2, we now describe an online, a batch, and a block-wise
learning algorithm, however, now for single-channel inverse modeling instead
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of simply for a gaina. The derivations are almost the same, therefore we skip,
now and again, a few steps.

4.4.1 Online learning algorithm

With an online learning algorithm we process the estimation and adaptation at
the sample rate. Let(z) = a!(z) denote the estimation af !(z)

Nw
w(z) & Z wpz” ", (4.115)
n=—Nw
We then have
ug = 2' Pry (wi(2)x(2)) (4.116)

wherew, (z) isa~'(z) at discrete time, and
est = 5 — (4.117)

is the corresponding estimation error. At time instanwe take|es,|* as the
error criterion which we wish to minimize. As an example, the LMS3-Ws
becomes

Wy t+1 = Wpt + ,Uestxzfn (4118)
wir(2) = wn(2) + P (es() Pronyions ((2)  (4.119)
= PN, (we(2) + pes 2 ta* (2)) (4.120)

wherePy ; (es(z)) = e,z andes(z) £ 3, es; 277

Other update equations for single-channel inverse modeling can be derived
with the update equations for inverse-gain identification from Table E.8, simi-
larly to LMS3-Ws.

4.4.2 Batch learning algorithm

For the batch learning algorithm we use the estimation error of the whole data
sequence for the update ef, (z), wherek denotes the iteration index. At
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iterationk, the sequence outpuj,(z) is

upk = 28 Py (wi(2)z(2)) (4.121)
= 2" Pt (g (2)5(2) + wi(2)n(2)) (4.122)
T,
ug(z) = Z ug gzt = Por, 1, (wi(2)z(2)) (4.123)
t=—"1y,
= P_z,1, (91(2)5(2) + we(2)n(2)) (4.124)
with g5, (z) = wi(2)a(z). The estimation error sequeneg (z) is
Estp = 56— Upk (4.125)
Ty
esk(2) & Y esppz” (4.126)
t=—T,
= P-n,1, (5(2) — up(2)) (4.127)
= P, (11— k()] (2) — we(2)n(2)) - (4.128)

At iteration k£ we wish to minimizq|es,c(z)||§r. This is equal to averaging the
update over the whole data sequencé cf 27}, + 1 samples. As an example,
if we use LMS3-Ws we have

Ty

12 .
Wnoks1 = Wn g + TR t;T estk Tj—n (4.129)

Ty
o .
+ 2Tu +1 t;T Pt’t (esk (Z)) Pt*Nw,t+Nw (.Z'(Z))

wi41(2) = wi(2)
(4.130)

= () ca2)e"(2)) (4.131)

I3
+2Tu-|—1

where we used (D.54W_g, 1, (es(2)) = es(2), andP_n, n, (wi(2)) =
wy(z). Other batch learning algorithms can be derived with Table E.8, analo-
gously to LMS3-Ws.

4.4.3 Block-wise learning algorithm

We change the system model slightly such that the input, the noise, and the
output sequence have infinite length. Similarly to Section 4.2.4 we apply the
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overlap-save technigue, where the output seque(ods partitioned into con-
secutive, non-overlapping blocks of length = 2T, + 1. With k£ we de-
note the block index. We can then describe the output sequence: ps=
Yo uk(2)z~*E with

ug = 2" Py (wi(2)z(2)) (4.132)
= 2" Pt (9k(2)5(2) + wi(2)n(2)) (4.133)
Ty
uk(2) £ Y uppgez ! (4.134)
t=—T,
= P-m,1, (Wi (2)wk(2)) (4.135)
=P_q1, (9x(2)sk(2) + wi(2)ng(2)) (4.136)

wheresy(z) is the system input sequence defined in (4.23), Witk Ty + Na.
According to the overlap-save technique [84], we require That T\, + Ny.
The estimation error sequence can be written as

es(z) = > po . esp(2)z 7 with (4.117) and

Ty
esp(2) = Z eshL it k? | (4.137)
t=—Ty
=P_m,1, (s1(2) — ur(2)) (4.138)
=P_n1, ([ — gr(2)]sk(2) + wi(2)ne(2)) - (4.139)

The update is processed at the block rate, where in bloale aim at mini-
mizing ||eSk(z)||2f. This is equal to averaging the update over a whole block of
L = 2T, + 1 samples. As an example, if we use LMS3-Ws we have

kL+Ty

> esmi, (4.140)

t=kL—-T,

W k+1 = Wn,k + 0, + 1

Ty
| *
w1 () = 0+ gy 3 Pea(enl®) P, (0l

(4.141)
=P NN, <wk(z) + m%es,c(z)x;(zﬁ (4.142)

where we used (D.54) in the last step. Further block-wise learning algorithms
for single-channel inverse modeling can be derived analogously to LMS3-Ws
with the sample-wise update equations of Table E.8.

4.4. Single-channel inverse modeling 111

4.4.4 Extension to circular convolution

We follow the same ideas as in Section 4.2.7, where we consider the case where
long filters are involved. Again we modify the filter and update equations such
that we can apply a circular convolution, and find the necessary conditions.

Batch learning algorithm

We consider the learning algorithm of Section 4.4.2, where we adapt a non-
causal filter to possibly invert a nonminimum-phase system. To this end, we
replace the linear convolution, given in (4.123), by a circular convolution, i.e.,

uk(z) = P, 1, (Wi (2)z(2)) (4.143)
=P, (Pe (wh(2)2(2)) - (4.144)

Equality holds for
C> 2T +1>2(Ty+ Nu) +1. (4.145)

The inequality on the right guarantees that every elemeat, ©f) is free from
boundary effects, e.gu,; is a sum of2NV, + 1 elements, and the inequality
on the left guarantees that at least #f#g, + 1 center elements of the circu-
lar convolutionP¢ (wy(2)z(z)) coincide with those of the linear convolution
wy (2)z(2).

We can proceed the same way for the update equations. Again we use
LMS3-Ws as an example. Starting With (4.131), we obtain

wer1(2) = we(2) + g P, (e (2)a° (2) (4.146)
= wi(2) + gty P (P (es(2)e’(2))  (4.247)

which holds for (4.145), just as for the filtering in (4.144).

Block-wise learning algorithm

Substitutinge, (z) for z(z) in (4.144) and (4.147) gives the filtering and update
equations of LMS3-Ws. The same constraint (4.145§ftwold. £ now denotes
the block index.
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4.5 Efficient implementation of single-channel in-
verse modeling

In the following, we are interested in computationally efficientimplementations
of the concepts described in Section 4.4.4.

4.5.1 Online learning algorithm

See comments in Section 4.3.1.

4.5.2 Batch learning algorithm

The whole batch learning algorithm for inverse modeling is given on page 114
from (4.148) to (4.163). The algorithm is designed such that it can adapt a
non-causal filter.

The following comments can be made:

e In (4.148), the constraint on the minimum size of the number of input
sample27y + 1 is given for the case where we ha2é, + 1 output
samples and where we wish to ad@pi,, + 1 filter coefficients. The
FFT sizeC is usually chosen to be a power of two.

o In (4.157), the filtering (convolutiorPc (wy(z)z(z)) = W;X, with
W, =C(wg) andX = C(x), is carried out in the frequency domain.
In (4.158) the2T}, + 1 elements which belong to the linear convolution

uk(2)=P_1, 1, (750 (wk(z)x(z))) are extracted, as seen in (4.159).

¢ In (4.160), the adaptation error is build in the time domain and then trans-
formed in (4.161) into the frequency domain where it is used afterwards
for the update.

e Any update equation listed in Table E.9 can be used for the adaptation.

The RLS-type algorithms additionally require the update of a correlation
matrix.
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For further information, see also the comments in Section 4.3.2 for the batch
learning algorithm for system identification.

4.5.3 Block-wise learning algorithm

The whole block-wise learning algorithm for inverse modeling is given on page
115 from (4.164) to (4.179). As opposed to the the block-wise learning algo-
rithms for system identification, described in Section 4.5.3, we adapt a non-
causal filter, to cope also with a nonminimum-phase system In fact, since

we introduce a delay in the reference signal, shown in Fig. 4.4, a part of the
non-causal part ofy, (z) becomes causal.

The following comments can be made:

e In (4.169), we introduce a delay @f samples for the reference signal
s(z). With =Ny, < d < Ny, we can steer the center of gravityof (z)
within the 2V, + 1 filter taps. Special cases aré:= —Ny, if a(z) is
minimum phased = +Ny, if a(z) is maximum phase, and = 0 if
a(z) is mixed phase. The parametércan also be adjusted during the
adaptation, depending on the shape of the envelopg ©f).

e Any update equation listed in Table E.9 can be used for the adaptation.
The RLS-type algorithms additionally require the update of a correlation
matrix.

Further comments can be found in Section 4.3.3 for the batch learning algo-
rithm for system identification.
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Batch learning algorithm for SISO inverse modeling
Definitions and initializatior{k = 0):

C>2T+1>2(Tu+ No) +1

L=2T,+1
§= (so,...,sTu,O,...,O,S_Tu,...,s_l)T
S = diag (F3)
X = (:Uo,...,a:Tx,O,...,O,w,Tx,...,w,l)T
X = diag (F %)
Wy = (wo,...,wNW,O,...,O,w_NW,...,w_l)T
V_Vo = dlag (F Wo)
Py =FP 5, n F!
For every iteratiork = 1,2, 3,.. ..
1. Filtering:
U, =W;X
u, = p—TmTu F! diag ([_Jk)
= (uo,...,uTu,O,...,O,u,Tu,...,u,l)T

2. Adaptation error:

&, =5 iy

3. Update equations:

V_V§chl = any update equation from Table E.9
Wiy = diag (Pw diag (Wi, ,))

(4.148)
(4.149)

(4.150)
(4.151)

(4.152)
(4.153)

(4.154)
(4.155)

(4.156)

(4.157)
(4.158)
(4.159)

(4.160)
(4.161)

(4.16
(4.163)

2)
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Block-wise learning algorithm for SISO inverse modeling
Definitions and initializatior{k = 0):
C>2Tx+1>2(Ty+ Nw) +1 (4.164)
L=2T,+1 (4.165)
Wo = (wo, ..., wn,,0, ..., 0,W_pNy, - w_1)" (4.166)
W, = diag (F wy) (4.167)
Py =FP_p, N, F! (4.168)
For every blockk = 1,2,3,...
1. Filtering:
Sk = (SkL—dy -+ » SkL+Tu—ds Oy -+ +» Oy SKL_Ty—ds - - - SkL—1-d)
(4.169)
S; = diag (F &) (4.170)
ik = (kaa “e :ka—l—Tx:O: e 70;«TkL—TX7 - ,.’L‘kL_l)T (4171)
X = diag (F %) (4.172)
Up = Wi Xy (4.173)
iy = P_q, 1, ' diag (Ty) (4.174)
= (ukL, e URL+ Ty 0, ceey O,UkL_Tu, . ,ukL_l)T (4175)
2. Adaptation error:
€5, = S — Uy (4.176)
Esk = diag (F ésk) (4.177)
3. Update equations:
W), = any update equation from Table E.9 (4.17
Wiy = diag (Pw diag (W), ,)) (4.179)

8)
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4.6 Wiener filter

In analogy to the instantaneous mixing problem stated in Chapter 2, we can
now formulate thaViener-Hopf equation@VHE) for the single-channel con-
volutive case. To this end we define the following correlation sequences

o0
res(2) £ ) res 2T (4.180)
T=—00
where we have, in the deterministic case,
T

1
A s *
Fasp & lim oo tz}_ijtst,T (4.181)

and in the stochastic case
Tosy = E{wiirs]} = E{ms;_, } . (4.182)

Likewise we defin@s; (2), 75z (2), 72z (2): 25 (2)s Tuz (2), eys (2), andreg (2).

4.6.1 Wiener filter h"=*(z)

Infinite-length Wiener filter  The Wiener-Hopf equation for the single-channel
identification problem can be derived by thethogonality principle which
says that the error signal must be uncorrelated with the input signal

Tees(2) =0. (4.183)

For an infinite-length filtet(z) = °2 _ h,z~™ and the error signady; =
¢ — Iy we have

Texs (2) = Tus(2) — 12s(2) (4.184)
= Tgs(2) — h(2)rss(2). (4.185)
Using (4.185) in (4.183), we obtain the Wiener-Hopf equation
h(z)rss (Z) =Tgs (Z) . (4186)
Solving (4.186) forh(z) yields
RS (2) = 145 (2)r55 (2) (4.187)

where h"™=(z) is the Wiener filter which minimize {|e.;|?}. Note the
analogy between (4.187) and (2.8) defined in Section 2.2.1.
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Finite-length Wiener filter  The Wiener-Hopf equation for a finite-length fil-
terh(z) = Zfl:a hnz~" is given by

Pa,b (Pmb (h(Z)) T'ss (Z)) = Pmb (sz (Z)) . (4188)

If we assume that the input signal is white, irg, (2) = 755, then (4.188)
becomes

h(2)rssy = Pap (Tes(2)) . (4.189)

Solving (4.189) forh(z) gives

hMMSE—X(z) — ilpa,b (Tzs (Z)) . (4.190)

rSSO

4.6.2 Wiener filter w"s==(z)

Infinite-length Wiener filter  The Wiener-Hopf equation for the single-channel
inverse-modeling problem can also be derived by dhogonality princi-
ple[57]. Again, the error signal must be uncorrelated to the input signal which
gives now

Tew(2) =0. (4.191)

o0
n=—oo

For an infinite-length filtekw(z) = 3
sy — u; We have

wyrz~ ™ and the error signads, =

Tesa (Z) =Tsz (Z) — Tz (Z) (4192)
=75 (2) —w(2)res (2). (4.193)

Using (4.193) in (4.191), we obtain the Wiener-Hopf equation
w2 (2) = Toa (2). (4.194)
Solving (4.194) forw(z) yields
WE(2) = 1y (2 (2) (4.195)

wherew"=%(z) is the Wiener filter which minimize {|es;|?}. Note the
analogy between (4.195) and (2.61) defined in Section 2.5.1.
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Finite-length Wiener filter  The Wiener-Hopf equation for a finite-length fil-
terw(z) = Zb_ wpz~"is

Pap (Pap (w(2)) Tea(2)) = Pap (rsz(2)) (4.196)

which can be written with (D.14) as

b
> Prr (Payp (w(2)) 142 (2 ZPTT rea(2)) . (4.197)

Unfortunately (4.196) is not as easily solvable as (4.188), siriegis a non-
white sequence and therefarg, (z) does not consist of a single term. Thus,
we have to setup a system bf a + 1 linear equations to obtain the filter
coefficientsw,,. These equations are obtained by evaluating (4.197) for every
powerz™ for a < 7 < b. From the left side of (4.197) we rewrite

Pab (w(2)) res (2 (an ”)( Z rmkz_k> (4.198)

k=—o00
b
= Z Z wy, rmsz(’”rk) (4.199)
n=a k=—oo
o0 b
= > ) waree,_, (4.200)
m=—0o0 n=a

where we used the substitution= & + rn. Inserting (4.200) into the left side
of (4.197) yields

ZP (Pab( Tzz ZPTT< Z anrmcm n)

B - (4.201)
b b
= Z 2z~ T Z Wn, Tog,_p, - (4.202)

The right side of (4.197) is

> Prr(re(z Z Tsar2 " . (4.203)
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Evaluating now (4.197) for every power ", (a < 7 < b), and using (4.202)
and (4.203) gives the following set of equations

Z Wn Tew, _, = Tszr (a <7 <D). (4.204)

The equations in (4.204) can be written in matrix form
Tzag cee Trag_y W, T'szq
= : . (4.205)
Twwy_, -+ Taxg wp Tszy,

Solving this system of linear equations, which involves a matrix inversion of
dimension(b — a + 1) x (b — a + 1), yields the coefficients),, of w""***(z).
Special cases are with= 0 andb = N,, (causal Wiener filter), or witly, =

— Ny andb = Ny,.

Approximation of w"*(z)

We now derive an approximation of the finite-length Wiener filt#¥=*(z) of
(4.196). We thereby use the existence of a fast implementation of the circular
convolution, and a fast implementation of the inverse of a circular matrix.

We use the following approximations;, (z) = Pc (rez(2)) & e (2)
O Fop (2) 2 Po (1ee(2)) & T22(2), andig, (2) 2 Po (rse(2)) = 7se(2)
or Fep (2) 2 Po (rsx(2)) & 752(2), WhereC is choserlarge enoughsuch
that||r,. (2) — 72r (2)|| 7 and||7,. (2) — 7. (2)]| - bECOMe very small. We can
now state a new equation similar to (4.196)

Pe (0(2) e (2) Tt (2)) = Pe (Fsa (2) T (2)) (4.207)

The left hand side of (4.207) gives exacilyz) and the inversion in right hand
side of (4.207) can be computed by the inversion of a circular matrix, which
requires two FFT operations and an element-wise inversiobflanensional
vector (EqQ. (3.123)). Finally we have

W(2) 5 Pay (P (Foe ()72 (2))) - (4.208)
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4.7 Performance measures

We use the following performance measures for single-channel identification
and inverse modeling:

e Average MSE ok of block k:

kL+Tx

1 5 1 9
. = = —— . (4.209
Jusex(k) Tt 1 Z |ext| T+ 1 llexk (2% - ( )

t=kL—T,
e Average MSE ok of block k:

1 kL+T, 1 ,
Jused k) = ———— 2o~ . (4.210
MSE S( ) 2Tu + 1 t:]ng |est| 2Tu + 1 ||€Sk(z)||}- ( )

e Average block intersymbol interferencks (g5 (z)) of block k, where
Jisi(.) is defined in (6.131) angk.(z) = wi(2)a(z).

4.8 Simulations

4.8.1 Hearing-instrument feedback-path

In this example, the filteti(z) is a real measured hearing-instrument feedback-
path from [115]. The impulse responsesagt) anda'(z), as well as the
corresponding transfer functions are shown in Fig. 4.5. We normatized
such that||a(z)||§: = 1. The sample frequency i& = 1/7 = 16 kHz, where

T denotes the sampling period.

4.8.2 System identification

For the system-identification simulation we take the block-wise learning algo-
rithm from page 105, except that we adapt a non-causal filter 2uith + 1

filter coefficients. We hav&s = 1000, N, = 200, Ty = Ts — N = 800, the
block sizeL = 27y + 1 = 1601, and the FFT siz€' = 2048. The input signal
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Figure 4.5: Hearing-instrument feedback-padfiz): Top: Impulse response
of a(z) anda~!(z). Bottom: Magnitude of transfer function
la(e??™fT)| and|a=1(e/2771)|. From the two-sided expansion of
a~!(z) we see that(z) must be non-minimum phase.
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and the sensor noise are white Gaussian signalsayita 1 ando, = 0.01
(—40 dB), respectively. The parameters of the algorithms are

LMSI-HX p=0.15
LMS2-HX g = 0.1
LMS3-Hs p = 0.1
RLS1-HX A =02
RLS2-Hs A =0.2.

The performance curves dfjsex and.Jyse-sare show in Fig. 4.6, those fdyg,
in Fig. 4.7. Juse-xis evaluated directly with (z), Juse.sandJis are evaluated
with P_n,.~, (B ' (2)) andgi(2) = P_n,n. (b1 (2)) a(2), respectively,
with Ny, = 300.

We can make the following observations:

e The RLS-based algorithms converge faster than the LMS-based algo-
rithms and achieve about40 dB for Jysex.

e Among the LMS-based algorithms, the LMS1-Hx has the fastest conver-
gence, and also the lowest valuesfgge.x, Juse-s, andJis; in the steady
state.

e The LMS3-Hs has a very slow convergence. This is caused by the high
eigenvalue spread of the input autocorrelation md®ix, = r,.(z) =
a(z) rss(2) a*(z) = | a(2)]?, see alsda(f)| in Fig. 4.5.

e We see that/ysex approaches-40 dB, which is what we expect from
(4.38), as-40 dB is just the SNR of the sensor signalHowever,Jyse-s
does not go below about20 dB. This observation was already made in
Section 2.10 for the identification of an ill-conditioned mixing matrix.

o Atfirst sight, the forgetting factok = 0.2 seems to be very small. How-
ever, since we have a large block lendihthere are enough samples
within a block for the estimation of the correlation matrices.

4.8.3 Inverse modeling

For the inverse-modeling-identification simulation we take the block-wise learn-
ing algorithm from page 115. We ha¥% = 1000, Ny, = 300, Ty, = Tx— Ny =
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700, the block sizel. = 2T, + 1 = 1401, and the FFT siz€ = 2048. The
input signal and the sensor noise are white Gaussian signaleyithl and
on = 0.01 (—40 dB SNR), respectively. The parameters of the algorithms are

LMSI-WX = 0.15
LMS2-Wx = 0.1
LMS3-Ws = 0.1
RLS1-Wx A =0.2
RLS2-Ws A =0.2

The performance curves dfysex and Jyse-s are show in Fig. 4.8, those for
Jisi in Fig. 4.9. JusesandJg) are evaluated directly witlv, (z) andgg(z) =
wy,(2) a(z), respectivelyJusex is evaluated withP_ n, v, (wj, " (z)) with Ny, =
200.

We can make the following observations:

Again, the RLS-based algorithms converge faster than the LMS-based
algorithms.

Among the LMS-based algorithms, the LMS1-Wx has the fastest conver-
gence and also the lowest values f@ise«, Juse-s andJs; in the steady
state.

The final steady-state value df;sg« is higher in all simulations than
that for the system-identification simulations.

Juvse-s reaches only about20 dB, and not—40 dB for two reasons.
Since we have normalizeéfl(z)||r = 1 anda(z) is not an allpass filter,

we havel|a=!(2)||p > 1. Insertinga™! () for wy(z) in (4.114), gives
lla=t(2)||F o2 > o2, which is one reason whyuse.s is higher than
—40 dB. The second reason is because we use only finitely many co-
efficients to estimatea—!(z). We can decompose *(z) — wi(z) =
[P_munvu (672(2)) —wi(2)] + [a72(2) = P—nu,vw (@71(2))]. The
second term does not vanish, because of the finite length, &f), and
therefore the terrf{l — P_n,,. v, (a7'(2)) @™ (2)||r o2 remains also as

residual error infyse-s, even forP_n,, ., (a=!(z) — wi(z)) = 0.

e Again, the LMS3-Ws has a very slow convergence.
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Figure 4.6: Performance curves of system identificatigiise-x(k) (solid) and

Juse-dK) (dashed). From top: LMS1-Hx, LMS2-Hx, LMS3-Hs,
RLS1-Hx, and RLS2-Hs.
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Figure 4.8: Performance curves of inverse modelingusex(k) (solid) and
Juse-{K) (dashed). From top: LMS1-Wx, LMS2-Wx, LMS3-Ws,
RLS1-Wx, and RLS2-Ws.

Figure 4.9: Performance curves of inverse modelingdis (k). From top:
LMS1-Wx, LMS2-Wx, LMS3-Ws, RLS1-Wx, and RLS2-Ws.
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The performance curves reveal, that with a srigliex or Juse-s the Jis
is also small, and vice versa. Furthermore, the simulations show, that the algo-
rithms reveal a similar behavior as their counterparts in Section 2.

4.9 Summary

In this section we have described the single-channel case of system identifica-
tion and inverse modeling. We have focused on the situation, where the un-
known channel filter idong. Hence, from the computational point of view,

it is worth carrying out the filtering and the adaptation in the frequency do-
main. Together with the concepts from Chapter 2, where we have analyzed the
multichannel instantaneous-mixing case, we now have the tools necessary for
dealing with the general multichannel case, as shown also in the commutative
diagram in Fig. 1.2.

Alternatively to the overlap-save technique, where the output sequence is
subdivided into consecutive, non-overlapping blocks, we could also use an
adaptive algorithm with an overlap-add technique [18, 19, 98], where the in-
put sequence is subdivided into non-overlapping blocks, as shown in Fig. 4.10.

The blind counter part of inverse modeling, i.e. blind deconvolution, will
be described in Section 6.8.
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‘ Si-1(2) Sk(2) Sk+1(2)

S—1(2)

Sk11(2)

Rpe41(2)

X(z)

‘ ‘ data ‘ ‘ 7eros

Figure 4.10: Overlap-add technique. The input sequence is partitioned into
non-overlapping blocks.



Chapter 5

Multichannel identification
and inverse modeling

In this chapter we combine the instantaneous-mixing case from Chapter 2 with
the single-channel convolution case from Chapter 4, see also Fig. 1.2.

5.1 Rules for the multichannel extension

As shown in Fig. 1.2, we can extend either the single-channel convolutive-
mixing case, or the multichannel instantaneous-mixing case to the multichannel
convolutive-mixing case.

Single-channel to multichannel extensiona(z) — A(z)) To extend the
update equations from Chapter 4 for the single-channel convolutive-mixing
case to the multichannel counterpart, we use the following rules:

e A polynomiala(z) is replaced by a polynomial matri&(z) or a poly-
nomial vectora(z).

e Complex conjugation is replaced by Hermitian transposition.

131
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e A circulant matrixA is replaced by a block circulant matri.
¢ Adiagonal matrixA is replaced by a block diagonal matr

e The Fourier matri¥ and the inverse Fourier matx—! are replaced by
T andT 1, respectively, wher@ is defined in (3.7).

Extending the instantaneous-mixing case to the convolutive-mixing case
(A — A(z)) Toextendthe update equations from Chapter 2 for the instanta-
neous mixing case to the convolutive mixing case, we use the following rules:

e Depending on the context, a matiis replaced either by a polynomial
matrix A(z), a block circulant matriXA, or a block diagonal matriA.

e Depending on the context, a vectois replaced either by a polynomial
vectora(z), a block circulant matri>A, or a block diagonal matriA..

e We apply the polynomial projection operatBror the circular polyno-
mial projection operatdP after every operation in the-domain, as we
are interested in filters and time sequences of finite length.

Similar rules are given in [34,69, 71].

With these rules we extend the system description and the adaptive algo-
rithms to the multichannel convolutive-mixing case.

5.2 Description of the multichannel system

Convolutive-mixing matrix ~ We use the same multichannel convolutive-mixing
model, as described in Section 1.2, except that the unknown system has now
finite length

Na
A(z) £ Z Az = [az](z)] (5.1)
n=—N,
N,
= i=1,...,.M
= n Y 5.2
) n;vaa”’ ) J=1,, Ms. 5.2
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Environment The Multichannel extension of Section 4.2.1 is as follows: The
input sequence(z) of length27s + 1 is

Ts
s(z) = Z siz L. (5.3)

t=—Ts

The input-output behavior of the model is defined as

x, = 2 Py (A(2) s(2) +n(2) (5.4)
Tx
x(z) 2 Z xtz7 = P_p, 1, (A(2) 8(2) + n(2)) (5.5)
t=—"1Tx

wherex(z) is the output sequence of finite lengtfi + 1. The elements of
n(z) contain the sensor-noise sequences, and have also Efgth1.

5.3 Multichannel system identification

In multichannel system identification, we wish to find a polynomial matrix

Nh
H(z) £ Y Huz ™" = [hi(2)] (5.6)
n=—Np
Np .
i1=1,...,.M
hij(z) & hijnz " Y 5.7
() n;Nh s’ j=1,..., Ms. ®.7)
such that
x(2) £ P_g.z (H(2)8(2)) (5.8)
is an estimate ok(z) with the corresponding estimation error
ex(2) 2 x(2) — %(2) (5.9)
= P55 ([A(2) = H(2)]s(2) + n(2)) . (5.10)

5.3.1 Batch learning algorithm for multichannel system iden-
tification

This section is the multichannel extension of Section 4.2.3 and 4.2.7.
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Description in the z-domain In analogy with (4.47), the multichannel esti-
mation sequence is

Xk = 2" Py (Hi(2) s(2)) (5.11)
Tx
%p(2) £ Y XepzTt = Ponm (Hi(2) s(2)) (5.12)
t=—"1x

wherek denotes the iteration index. Introducing a circular convolution similar
to (4.74), gives

%4(2) = Ppy.1; (Po (Hi(2) 5(2)) ) (5.13)

which also holds for (4.75), i.eG' > 2Ts+ 1 > 2(Tx + Nyn) + 1. For the
adaptation we choose again the LMS1-Hx as an example. Extending (4.55)
gives

Hoin = P, (I—Ik(z) + ﬁem(z) SH(Z)> (5.14)

or

I3

Hj1(2) = Hi(2) + M1

Py (Pe (exi(2)s7(2)))  (5.15)
if we include a circular convolution similar to (4.77). Note, that the complex
conjugation was replaced by a Hermitian transposition.

Fast implementation The whole batch learning algorithm for multichannel
system identification is given on page 136 from (5.17) to (5.32). Since we have
all data available, we adapt a non-causal filter. The algorithm is the multichan-
nel extension of the algorithm described in Section 4.3.2.

The following comments can be made:

e The circular convolutiorPo (Hy(2) s(2)), which is a part of (5.13) is
calculated in (5.26) in the frequency-domain. Note, that we have the
isomorphisnPe (Hy(z)s(z)) = X, = H;S = X, = H;S. The
projection operatiorP_r, 7, (.) in (5.13) is carried out in (5.27) in the
time domain.
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e Any update equation listed in Table E.6 can be used for the adaptation.
The RLS-type algorithms additionally require the update of a block cor-
relation matrix.

e The projection operatio_n; n, (.) in (5.14) or (5.15), which con-
strains the polynomials iH .1 (z) to have only2 Ny+1 terms, is carried
out in (5.32). To this end, th&/? filters are transformed into the time
domain, padded with zeros, and transformed back into the frequency do-
main. The projection matril?’_j\fml\;h is defined according to (3.13).

5.3.2 Block-wise learning for multichannel system identifica-
tion

This section is the multichannel extension of Section 4.2.4 and 4.2.7. The dif-
ference to the batch learning algorithm is tkadenotes now the block index,
and for each adaptation step, a new input block

Ts
sp(z) = Z skLt2 ' =P onm, (sz s(z)) (5.16)
t=—Ts

is used, instead of the whole seques¢e). Similarly to the single-channel
case, we use an overlap-save technique.

Fast implementation The whole block-wise learning algorithm for multi-
channel system identification is given on page 137 from (5.33) to (5.48). We
adapt a causal filteF(z). The algorithm is the multichannel extension of the
algorithm described in Section 4.3.3.

The following comments can be made:

e Since we adapt a causal filter, the constraints in (5.33) are slightly differ-
entto (5.17). Similarly, the block lengthin (5.34) is defined differently
from that in (5.18).

e Any update equation listed in Table E.6 can be used for the adaptation.
The RLS-type algorithms additionally require the update of a block cor-
relation matrix.

e The projection matri>lf’07Nh is defined according to (3.12).
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Batch learning algorithm for MIMO system identification

Definitions and initializatior{k = 0):

C>2Ts+1>2(Tx+ Np) + 1 (5.17)
L=2Tx+1 (5.18)

Xm = (@m05-- - Tm. T, 0, ..., 0, Ty —73, - - - 7$m7_1)T (5.19)

X = [X,,] = [diag (F Xp)] (5.20)

Sm = (Sm,0,---»8m,15,0,...,0,8m,—15,- -, Sm,—1) (5.21)

S = [S,,] = [diag (F5,,)] (5.22)

hijo = (hijoy-- s Pijinm 0y -y 0y hij Ny -+ hij, 1) (5.23)

H) = [Hij0] = [diag (F Bij,o)] (5.24)

P; =FP n N F ! (5.25)

For every iteratiork = 1,2,3,. ...
1. Filtering:

X, =H,S (5.26)

Kk =P g0, F L diag (f(ch) (5.27)

= (#m0s - Em 1 0y, 0Ty -y 1) (5.28)
2. Adaptation error:
éxm kT Xm — §m7k} (529)
B, = |Bx,,,| = [diag (Fax,, , )] (5.30)
3. Update equations:
ﬁ;H = any update equation from Table E.6 (5.3
Hjj r41 = diag (P diag (Hj; ;,,)) (5.32)
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Block-wise learning algorithm for MIMO system identification
Definitions and initializatior{k = 0):
L=Ts+1Tx+1 (5.34)
hijo = (hijo,-- > hijng, 0, ..., 0)" (5.35)
ﬁo = [I:Iij,o] = [dlag (F ﬁij70)] (536)
P; =FPy F! (5.37)
For every blockk = 1,2,3,...:
1. Filtering:
Xk = (@mkLy -y Tm kL+Ts 05 -, 0, T kL—Tg, - - - ;évm,kL—1)T
(5.38)
X}c = [Xm,k] = [dlag (F imJg)] (539)
Smk = (SmkLys -+ SmkL+Ts> 05 .-, 0, S kLT, - - -, Sm,kL—l)T
(5.40)
Sk = [Sim.k] = [diag (F§nk)] (5.41)
X, = H,S; (5.42)
Xk = Pog, 1, F~' diag ()_(mk) (5.43)
= (EmkLy- s B kLt To Os v oy Oy B kL—Tys - -y BmmkL—1)
(5.44)
2. Adaptation error:
8, . = X — X,k (5.45)
E, = B, | = [diag (F&x, , )] (5.46)
3. Update equations:
ﬁ;H = any update equation from Table E.6 (54
ﬁij,k+1 = diag (Pl—1 diag (ﬁ;j’kJrl)) (548)
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5.4 Multichannel inverse modeling
In multichannel inverse modeling, we wish to find a polynomial matrix

W) 2 Y Waz™ = [wi(2)] (5.49)

wij(z) = Z wij,nz’" ,7=1,....,.M (5.50)

such that
G(z) = W(2)A(z) (5.51)
becomes close to the unity matidix Thus,
u(z) 2 P_g, 1 (W(2) x(2)) (5.52)
is an estimate of(z) with the corresponding extimation error

es(2) & P_r,7, (5(2) — u(2)) (5.53)
=P_r,.1,([I - W(z) A(z)]s(z) — W(z)n(z)) . (5.54)

5.4.1 Batch learning algorithm for multichannel inverse mod-
eling

This section is the multichannel extension of Section 4.4.2 and 4.4.4.

Description in the z-domain In analogy to (4.123), the multichannel estima-
tion sequence is

ug = 2" Pry (Wi(2) x(2)) (5.55)
= 2" P4 (Gi(2) s(2) + Wi(2) n(2)) (5.56)
Ty
w(z) 2 ) wpzt = Pog g, (Wi(2) x(2)) (5.57)
t=—Ty

=P_1,1, (Gr(2) s(z) + Wi(z)n(z)) (5.58)
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Introducing a circular convolution similar to (4.144), gives
ui(2) = Pz, (P (Wi(2) x(2))) (5.59)

which also holds for (4.145), i.e; > 2Ty + 1 > 2(Ty + Nw) + 1. For the
adaptation we choose again the LMS3-Ws as an example. Extending (4.131)
gives

Wit1(2) = P-ny. <Wk(2) + ﬁesk(z) XH(Z)> (5.60)

or

_ H 5 H
Wi (2) = Wile) + g P, (Pe (esu(2)x"(2)) - (5.61)
if we include a circular convolution similar to (4.147). Note, that the complex
conjugation was replaced by a Hermitian transposition.

Fast implementation The whole batch learning algorithm for multichannel
inverse modeling is given on page 140 from (5.62) to (5.77). The algorithm is
designed such that it can adapt a non-causal filter. The algorithm is the multi-
channel extension of the algorithm described in Section 4.5.2.

The following comment can be made:

e Any update equation listed in Table E.10 can be used for the adaptation.
The RLS-type algorithms additionally require the update of a block cor-
relation matrix.

See also the comments in Section 5.3.1.
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Batch learning algorithm for MIMO inverse modeling
Definitions and initializatior{k = 0):

C>2T+1>2(Tu+ No) +1

L=2T,+1
Sm = (Sm,0,---»5m,70,0,---,0,8m,— Ty - -, Sm,—1)
S = [S,,] = [diag (F§,,)]
Xm = (@m0, Tm, T, 05+, 0,13y o -+, Tiy—1)
X = [Xp] = [diag (F X,,)]
Wij0 = (Wij05-+ ), Wij, Ny, 05+, 0, Wi5 —Nys - - - ,wij,,l)T

Wo = [Wijp] = [dlag (F Wij,O)]
Py =FP n, v F!
For every iteratiork = 1,2, 3,. . ..
1. Filtering:
U, =W, X
ﬁm7k = P*Tu,Tu F_1 diag (I_Jm,k)

= (um,Oa v 7um,Tua07 v aoaum,fTua . '7um,71)

2. Adaptation error:

3. Update equations:

W;H = any update equation from Table E.10
Wijkt1 = diag (Pg diag (Wi 41))

(5.62)
(5.63)

(5.64)
(5.65)
(5.66)
(5.67)
(5.68)
(5.69)
(5.70)

(5.71)
(5.72)
(5.73)

(5.74)
(5.75)

(5.1
(5.77)

6)
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Block-wise learning algorithm for MIMO inverse modeling
Definitions and initializatior{k = 0):

C>2Tx+1>2(Tu+ Nw) +1 (5.78)

L=2T,+1 (5.79)

‘X/'l'jp = (wmo, . ,w,vjww, 0, . ,0, wij7_Nw, . ,wij7_1)T (580)

Wo = [Wijp] = [dlag (F Wij,O)] (581)

Py =FP v F! (5.82)

For every blockk = 1,2,3,...:

1. Filtering:
S,k = (Sm,kL—da---aSm,kL-',-Tu—d;07---70:Sm,kL—Tu—da---:Sm,kL—d—l)T
(5.83)
Sk = [Sm.] = [diag (F 51)] (5.84)
X T
Xk = (TmkLy- - Tm kLT 05 - -, 0, T kL—Tyr - - - T kL—1)
(5.85)
X = [Xmi] = [diag (F Zpu,p)] (5.86)
U, =W, X, (5.87)
Gk = P_g, 1, F~" diag (Upn 1) (5.88)
= (Wm,kL» -+ > Um kL+Ty> 05+, 0, U kLT3, - - - ,UchLfl)T
(5.89)
2. Adaptation error:
Bs = Sk — Tk (5.90)
E, = {Esm,k} = [diag (F ésm,k)] (5.91)
3. Update equations:
W;c“ = any update equation from Table E.10 (5.9
Wij ki1 = diag (Pw diag (W; 41)) (5.93)

2)
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5.4.2 Block-wise learning for multichannel inverse modeling

This section is the multichannel extension of Section 4.4.3 and 4.4.4.

Fast implementation The whole block-wise learning algorithm for multi-
channel inverse modeling is given on page 141 from (5.78) to (5.93). We adapt
a non-causal filter matrix, to cope also with a nonminimum-phase syAtem

The algorithm is the multichannel extension of the algorithm described in Sec-
tion 4.5.3.

The following comment can be made:

e Any update equation listed in Table E.10 can be used for the adaptation.
The RLS-type algorithms additionally require the update of a block cor-
relation matrix.

See also the comments in Section 5.3.2.

5.5 Multichannel Wiener filter

We now extend the single-channel Wiener filters, given in Section 4.6 for the
system-identification and inverse-modeling problem, to the multichannel case.

Correlation matrices in the z-domain In analogy to the instantaneous mix-
ing problem stated in Chapter 2, we can formulateWiener-Hopf equations
(WHE) for the multichannel convolutive-mixing case. To this end we define
the following correlation sequences

Rys(2) £ ) Rus, 27" (5.94)
T=—00
where we have in the deterministic case

T

> xsf (5.95)

Ry, = lim
T=oo 2T +1 4=
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and in the stochastic case
Ryxs, £E {XHTst} =F {xtst_T} . (5.96)

Likewise we definfRss(z), Rsx(2), Rxx(2), Rux(2), Rzs(2), Re.s(2), and
Rex (Z)

5.5.1 Multichannel Wiener filter H"*(z)

Infinite-length Wiener filter The Wiener-Hopf equation for the multichan-
nel identification problem can be derived by thnthogonality principle which
says, that the error-signal vector must be uncorrelated to the input-signal vector

Res(2) = 0. (5.97)

For an infinite-length filteH (z) = >°>° ___ H,z " and the error-signal vec-
tor ex; =x; — X; We have

Res(2) = Rxs(2) — Rss(2) (5.98)
=Ry (2) — H(2)Res (2) . (5.99)
Using (5.99) in (5.97), we finally obtain the Wiener-Hopf equation
H(z)Rss(2) = Rxs(2) (5.100)
Solving (5.100) foiH(z) yields
H"*(2) = Rys (2)R 1 (2) . (5.101)

whereH"=*(z) is the Wiener filter which minimize& {||ey||3}. Note the
analogy between (5.101), (4.187), and (2.8).

Finite-length Wiener filter The Wiener-Hopf equation for a finite-length
multichannel filtefH (z) = Z:’zza H, >~"is given by

Pap (Pap (H(2)) Rss(2)) = Pap (Rxs(2)) - (5.102)

Furthermore, if the input-signal sequeneggz) are white and mutually un-
correlated, we havBg (z) = Rss,, and therefore (5.102) simplifies to

H(2) Rosy = Pap (Rus(2)) - (5.103)
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Solving (5.103) yiels then the finite-length multichannel Wiener filter

H"%(2) = Py (Rs(2)) R! (5.104)

ss( *

Note the analogy between (5.104), (4.190), and (2.8).

5.5.2 Multichannel Wiener filter W"s=(2z)

Infinite-length Wiener filter The Wiener-Hopf equation for the multichan-
nel inverse-modeling problem can be derived also by the orthogonality prin-
ciple. Again, the error-signal vector must be uncorrelated to the input-signal
vector which gives now

Rex(z) = 0. (5.105)

For an infinite-length filterW (z) = > W,z ™ and the error-signal
vectores, =s; — u; we have

Rewx () = Rex (2) — Rux(2) (5.106)
= Rsx(2) — W(2)Rxx(2). (5.107)
Using (5.107) in (5.105), we finally obtain the Wiener-Hopf equation
W (2)Rxx(z) = Rex(2) . (5.108)
Solving (5.108) foiW (z) yields
W"SES(2) = R (2) Ry (2) (5.109)

whereW""s&+(z) is the multichannel Wiener filter which minimizés{||es; |3 }.
Note the analogy between (5.109), (4.195), and (2.61).

Finite-length Wiener filter  In analogy to (5.102), the Wiener-Hopf equation
for a finite-length multichannel filtéeW (z) = Zzza W,z "is

Pab (Pap (W(2)) Rxx(2)) = Pap (Rex(2)) - (5.110)

Similar to the single-channel case, (5.110) is not as easily solvable as (5.102),
sincezx,, (z) are non-white, mutually correlated sequences and therBfegéz)
does not consist of a single term. Thus, we have to setup a system of+ 1
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linear matrix equations to obtain the filter coefficiem,. These equations
are obtained by evaluating (5.110) for every poweffor a < 7 < b. Doing
the same steps as from (4.196) to (4.204) yields

b
> W,Rux,_, =Rex, (a<7<D). (5.111)

The equations in (5.111) can be written in matrix form

Ruxy, - Rox W, Rax,

a—b
= : . (5.112)
Rux, , --- Rux W, Rex,

Solving this system of linear equations, which involves a matrix inversion of
dimension(b — a + 1)M x (b — a + 1)M, yields the coefficientd¥,, of
WMSEs(z). Special cases are with = 0 andb = N, (causal multichannel
Wiener filter), or witha = — N, andb = Ny,.

5.6 Performance measures

We use the following performance measures for multichannel identification and
inverse modeling:

e Average MSE ok, of blockk:

kL+Tx

— 1 2 _ 1 2
JMSE'X(k) - 2Tx+ 1 Z ||ext||F - 2Tx+ 1 ||eXk(Z)||]_— "
t=kL—Tx
(5.113)
e Average MSE ok, of block k:
1 kL+1y 1

Juse-s(k) = = 2 . (5.114
wedlk) = gpg 20 lleally = gy lewl - 6114

e Average block interchannel interferendg, (G (z)) of block k, where
Jici(.) is defined in (6.132) an@, (z) = W (z)A(z).
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e Average block intersymbol interferendgs (G (z)) of block k£, where
Jisi(.) is defined in (6.133).

e Average block multichannel intersymbol interferenkg.isi(G(z)) of
block k, whereJuc.isi(.) is defined in (6.134).

Alternative performance measures are the signal-to-interference ratio (SIR)
or the signal-to-interference-plus-noise ratio (SINR).

5.7 Simulations

In this section two simulation examples are given to illustrate the performance
behavior of some algorithms.

5.7.1 Multichannel system identification

The simulation setup is as follows/s = 4 source sighals( = 4 sensors,
the source signals are white Gaussian distributed mts 1, the sensor noise

is white Gaussian distributed with, = 0.01. The elements of the unknown
mixing matrix A.(z) are chosen randomly,;(z) are causal filters witVy =

200. The estimation matri¥I(z) has the same number of coefficientss),

i.e. Ny = 200, where initially all elements are set to zero. This makes a total
of 4 -4 -201 =~ 3200 filter coefficientsh;; , to adapt. We use the LMS1-Hx
algorithm given in Table E.6 with block length = 1601 and FFT sizel’ =
2048. The channel-wise performance curves are given in Fig.Bude-(k) is
evaluated WittW  (2) =P_n,,n,, (Hj ' (2)) with Ny, =200.

5.7.2 Multichannel inverse modeling

The simulation setup is as follows/s = 4 source signalsy = 4 sensors,

the source signals are white Gaussian distributed syth 1, the sensor noise

is white Gaussian distributed with, = 0.01. We take the sam# x 4 mixing

matrix with N; = 2 as in [70], which is ill conditioned and therefore difficult

to separate and deconvolve in the blind case. The non-causal separation matrix
W (z) hasN,, = 300 and was initially set tdW,(z) =1I. This makes a total
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of 4 -4 -601 ~ 9600 filter coefficientsw;;,, to adapt. We use the LMS1-
Wx, RLS1-Wx, and RLS2-Ws algorithms given in Table E.10 vili}h= 2000,
T, = 1700, block lengthL, = 3401 and FFT size&l’ = 4096. The parameters
of the algorithms are

LMS1-Wx p = 0.0001
RLS1I-Wx A =0.9
RLS2-Ws A =0.9

The channel-wise performance curves are given in Fig. 5.2 tofagkx(k) is
evaluated withH,(z) = P_n,.n, (W}, ' (2)) and Ny = 200. Jic; and Jig are
defined in (6.132) and (6.133), respectively.

5.8 Summary

Once the algorithms for the instantaneous mixing case and the single-channel
convolutive case have been derived, the extension to the multichannel case is
straightforward with the rules given in Section 5.1. Since we have focused
on an implementation in the frequency domain, the algorithms are mainly of
interest if we have to adapt filters with many coefficients. For filters with only

a few coefficients, it might be worth remaining in the time domain to keep the
complexity low.

The adaptation of a SIMO filter witli/ output signals can be treated as
M SISO filters which share the same input signal. For an LMS algorithm, the
adaptation of an MISO filter witli/ input signals can be handled as if there are
M SISO filters which have the same desired output signal. The MIMO case is
more difficult than the SIMO and MISO case.

In the next chapter, we derive the blind counterparts of the algorithms de-
rived for single- and multichannel inverse modeling, which, in fact, perform the
same task, but without knowledge of the source signals.
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5.8. Summary
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Chapter 6

Blind identification

In this chapter we develop blind algorithms to solve the blind source separa-
tion (BSS), blind deconvolution (BD) and multichannel blind deconvolution
(MCBD) problem, which are the blind counterparts of the inverse modeling
of an instantaneous-mixing system, single-channel convolutive-mixing system,
and multichannel convolutive-mixing system, respectively. We therefore make
the step from the non-blind algorithms given in Chapter 2, Chapter 4, and Chap-
ter 5 to their blind counterpart by replacing the non-blind error criterion by a
blind error criterion.

6.1 Central limit theorem

The central limit theorem(CLT) is one of the fundamental results important

for the understanding of the blind identification problem. Loosely speaking,
the CLT says that the pdf of a sufficiently large sum of independent random
numbers converges towards a Gaussian distribution, regardless of the pdf of the
individual random numbers. A precise definition of the central limit theorem is
given in [85].

Since we assume that the source signals are independent and identically
distributed (iid) random variables and mutually independent, the central limit
theorem has a direct consequence to a signal mixture or a convolution situa-

153
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mixing process separation process

Figure 6.1: Mixing and separation.

tion. For the BSS problem it says that the pdf of the mixed signals (sensor
signals) are alwaysloserto a Gaussian distribution than the pdf of the individ-

ual source signals involved in the mixing process. The same is true for the BD
problem, where the pdf of the convolved signal (sensor signal) is always closer
to a Gaussian distribution than the pdf of the source signal. Of course the same
statement holds for the MCBD problem. In fact, this problem is the hardest
among the blind problems, because the output signals will always be very close
to a Gaussian pdf, due to the numerous terng {a) = W(z)A(z), unless the
convolutive separation matriw (z) is really close to a true separation matrix,
e.g.A1(z2).

6.2 Assumptions in blind identification

For the BSS problem, if at most one source signal is Gaussian, then it is still
possible to separate all source signals. For the BD problem, the source signal
has to be non-Gaussian, otherwise no deconvolution is possible, only decorre-
lation. For the MCBD problem, all source signals have to be non-Gaussian, if
separation and deconvolution of the signal mixture is aimed for. In case one
source signal is Gaussian distributed, one can still separate all source signals,
however, the Gaussian source signal cannot be deconvolved, only decorrelated.
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6.3 Cost functions for blind identification

In a blind setup we have no access to the source signdlkis has the impor-

tant consequence that neither for system identification nor for inverse modeling
can we build the error signals required, kg.andes. We have to find a new
blind error signal which is derived from the accessible signals of the system,
i.e.z andu. We briefly list some of the techniques used in blind identification.

6.3.1 Blind source separation
Entropy

One can show that a uniform pdf has the highdifferential entropy a defi-
nition of which can be found in (A.1), among all bounded pdfs (compact sup-
port). If ps(s) is known, one can find a nonlinear mapping= g(s) such
thatpy (.) becomes a uniform distributiom (.). The choice of the nonlinear-

ity ¢g(.) depends ormps(s). However, in a blind setup, we do not know the
source signals,,,, but if we knowpg,, (s,,), we can calculate,,(.) and then
maximize the sum of the differential entropiesyaf = g, (uy,), i.€. maximize

> m H(py,, (9m(um)) ), under the constraint thaiet W # 0. This concept
was used in the derivation of thefomaxalgorithm proposed by Bell and Se-
jnowski [7].

Mutual information

One possible blind error criterion is the mutual information of the output sig-
nals. Since the source signals are assumed to be mutually independent, we
want to steer the coefficients of the separation mai¥ixsuch that the output
signals become mutually independent again. We can measure the independence
of random variables by using the Kullback-Leibler divergence

i (pu () = D (po@ [T, pu,.(un) 2 0. (6.2)

pu,, (-) denotes the marginal probability density functionldf,. D (.||.) is
defined in (A.3). For perfect separation, the cost functignbecomes zero.
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Negentropy

Since the mixing process makes the sensor signals approach a Gaussian pdf,
we can steer the separation process such that the output signal® pushed

away from a Gaussian distribution. To this end we define an error criterion,
which measures the divergence of a pdf to the corresponding Gaussian distri-
bution with the same first and second-order statistics.idgentropys such a
criterion and is defined as [40]

Ine(pu(2) = D (pu(u)llpg(u)) > 0 (6.2)

wherepg (u) is the pdf of a multivariate Gaussian distribution with the same
covariance matrix apy (u). Maximizing Jye corresponds to separating the
output signalst,,, .

Higher-order statistics

If X andY are two random variables [85], we say tiaandY areorthogonal
if

E{XY}=0 (6.3)
andX andY” areuncorrelatedf
E{(X -E{X}H¥ -E{Y}}=0 (6.4)
which is equal to
E{XY}=E{X}E{Y}. (6.5)

For zero-mean random variables, (6.3) and (6.4) are the samealfd}” are
two random variables, we say th&tandY areindependenif

pxy(z,y) = px(z) py (y) . (6.6)
From (6.6) it follows that

E{f(X)g(Y)} = E{f(X)} E{g(Y)} (6.7)
E{X™Y"} = E{X"™} E{Y"} Vm,n (6.8)

wheref(.) andg(.) are two arbitrary functions.
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If two random variables are independent, they are also uncorrelated. How-
ever, uncorrelatedness does not necessarily imply independence, except when
X andY are jointly Gaussian distributed. Because (6.5) is a hecessary but not
sufficient condition for (6.7), second-order moments are not a sufficient statistic
for blind identification.

Kurtosis The kurtosisis a measure based on the fourth-order statistics of a
random variable. The kurtosis of a random variallés defined as

_B{XY

K(X) = m (6.9)

Using (6.9), we have-2 < k(X) < oo and a Gaussian random variabte
hasx(X) = 0. [67]. Depending on the sign of the kurtosis, we distinguish
betweensuper-Gaussiarfx > 0) and sub-Gaussiar{(x < 0) distributions.
Loosely speaking, a sub-Gaussian pdflooks more flat, e.g. uniform pdf, a super-
Gaussian pdf more peaky, e.g. Laplacian pdf. The source signals used in data
communications are usually sub-Gaussian, whereas in acoustics, e.g. speech,
the source signals are normally super-Gaussian.

If we know for instance that all kurtoses of the source signals have the
same sign, we can steer the blind algorithm such that the kurtoses of the output
signals are either maximized or minimized.

A nice overview of different techniques for blind source separation is given
in[72].

6.3.2 Blind deconvolution

Similar cost functions can be defined for blind deconvolution. Here we wish
to remove the dependence in time of the output samples. This means that we
wish to adapt the deconvolution or equalization fili€lz) such that the output
signal becomes white and non-Gaussian.

1Sometimes the-3 is omitted in the definition.
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Bussgang property

The Bussgang property is another criterion commonly used in blind algorithms.
A signalu is thereby passed through a nonlineagity g(u). The autocorrela-

tion of u must then be equal to the cross correlation betweandy. We say

that a time-series(z) is Bussgandf E {g(u;)u¢—} = E {usus—, } holds and

uy is independent identically distributed [71].

Memoryless estimator

Another concept is the one of a memoryless nonlinear estimator [8,42]. Here
the output signalk; is passed through a nonlinearify.) such thatf (u;) is

used as a nonlinear memoryless estimate, oft is called memoryless, as the
estimate does not use any time-delayed output values d¢f computable, the
conditional mean estimata; = f(u;) = E {S:|U,=u.} is a suitable choice.
Note, if ps(.) is a normal distribution, the® {S;|U; =u.} =u,, i.e., the exact
shape of the nonlinear estimator degenerates to a linear estimator. Usually the
exact shape of the nonlinearif(.) is not so crucial. Sometimes it is even
enough if the sign of (u;) — u, is correct most of the time. Initially, it may be
difficult to find a good estimator anyway.

6.4. Blind error signal 159

6.4 Blind error signal

We now wish to find an error signal which can be used in the blind case. The
non-blind error signal for inverse modelingdg = s; — u¢. In the blind case,

we do not have access to the time sampleand therefore have to estimate
eithers; or es;. A reasonable choice would be to uge= u;, as we have in

fact s; = u; at convergence in the noise-free case. However, the error signal
éss = 5t — up would be zero all the time, which is of no help. Thus, if we
have only the output signal, and the input signat; available for building an
error signal, we have to introduce a nonlinearity. We follow the concept of a
channel-wise memoryless estimator.

Conditional-mean estimator We consider the multichannel convolutive-
mixing case. We apply a channel-wisenlinear memoryless estimateuch
thats,,, : = fm(um,:). The error signads,, ; = 5m,¢ — um,: then becomes

ésm7t = fm(um7t) — Um7t . (610)

A reasonable estimator is given by the channel-wise evaluation afahei-
tional mean

Smyt = E{Sm|Upn=1ums} (6.11)

- / St DS, 10, (Smtltim.t) dsmt (6.12)

= /Sm,t ) pUm'SWl (um7t|sm7t) DS (Sm’t) dSm,t . (613)
PU,, (umﬂ&)

In this derivation we used Bayes’ theorem. Near convergence, we can approxi-
matepy,, s, (Um,t|Sm,c) BY PN, (Um,e — Sm,t), Wherepy, () is a Gaussian
distribution with variancer,?,, which models the multichannel convolutive
noise [9], stemming from the interchannel and intersymbol interference due
to the equalization mismatdh — W (z)A(z)]. We assume a sensor-noise-free
model. We then have

§m,t =F {Sm|um7t} (614)

_ /5m7t i PN, (um,t - Sm,t) " PS,. (5m7t) d5m7t . (615)
pu,, (umﬂ&)

However, this integral is not easy to solve analytically. Furthermore, we need
an estimate of,2,, the variance ofy,, (.). Near convergence,?, will tend

m \"
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towards zero. Note, that for a perfect separation and deconvolutiof) =
ps,, () andpy, (.)=4(.). EQ. (6.14) then becom@s, + =u,, ¢, which concurs
with our intuition.

An alternative blind error signal can be defined as

€sm,t = Sm,t — Um,t (6.16)
= Smt — 9(Smt) - (6.17)

In fact, this error signal models the situation whegg; is unknown buts,,
is known. In this case we can ugg, : = ¢(Sm,t) = E{Un|Sm =>5m,}

Near convergence, where we havg: ~ u,,:, we can find a relationship
betweenf(.) andg(.). To this end, we replace,, ;: by u,,; in (6.17) and set
equal the two error signatg, from (6.10) and (6.17). We then end up with

f(um,t) — Um,t = Um,t — g(umﬂi) (618)

which can be written as
f(um,t) = 2um,t - g(umﬂ&) (6-19)
g(um,t) = 2um,t - f(um,t) (620)

or

f(um,t) + g(um,t)
2

ST (6.21)

Eqg. (6.21) has the interpretation thaififu,, +) > wm + theng(um, ¢) < U .

Score function Thescore functiorof a probability-density functiops(.) is
defined as

_ Ologps(s)  —ps(s)
ps(s) = ———5—— = pss(s) . (6.22)

The score function typically appears in the update equations of many known
gradient-based algorithms for blind identification if a maximum-likelihood cost
function is used .
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6.5 Transforming a non-blind into a blind algo-
rithm

6.5.1 BRLS1

We use the RLS1-Wx as an example to show the steps for the transformation
of a non-blind algorithm into a blind one. We assume the instantaneous mixing
case. The RLS1-Wx with exponential forgetting is defined in Section 2.4.4
from (2.50) to (2.53), see also Table E.7. We make the usual assumption that
the source signals are temporally white and mutually independent. Therefore
R, is a diagonal matrix and if unknown, we substitiRg; = I. Thus, there

is no need to updafﬁ;si with (2.52) and (2.53). Under these assumptions, the
RLS1-Wx simplifies to

1)
S+ (1= N sHy
Wt+1 = W;+ Mt (St — llt) SthWt . (624)

(6.23)

Mt

For the algorithm to work blindly, we somehow have to get ridsgfas the
source signals are not accessible.

We start with (6.23) which is, in fact, just a self-adjusting step-size con-
trol, with forgetting factorA as a parameter. In fagt, is not involved in the
separation process, it merely controls the adaptation rate. Therefore we can
replaces; by u;, asu; is certainly a reasonable estimatespfnear conver-
gence. Moreover, in doing so, we can keep the step;sizeal valued, even
thoughu; might be complex. Otherwige: might introduce an unwanted com-
plex rotation in (6.24). Keeping the step size real valued is especially useful in
the convolutive case, becaysgbecomes dependent on the frequency. In fact,
ut(w) corresponds to a bin-wise step-size normalization, a well-known tech-
nique from adaptive filtering in the frequency domain to accelerate the conver-
gence rate for non-white input signals [77]. A complex valyg@lu) would
introduce an additional phase shift into the update equation. However, once
the output signals are temporally white}! (z)u;(z), and henceu (w) = pu,
become frequency independent.

We can rewrite the update equation (6.24) as

Wit1 = W+ g (stsfl — uts{{) W,. (6.25)
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We now have several choices for replacing escim (6.25) by either a linear
estimates; = u; or a nonlinear estimatg, = f(u;). At least ones; has to

be replaced by a nonlinear estimate, otherwise the term in the bracket will be
zero all time. In the derivation of stochastic-gradient-based algorithms, e.g.,
the LMS algorithm, a correlation matrix is sometimes replaced by an instan-
taneous estimate for two reasons. The first is because the correlation matrices
are not known a priori and have to be estimated anyway, and the second is that
a multiplication with an outer product (matrix with rank one) requires fewer
element-wise multiplications than with a regular matrix. However, in our case

it is just the other way round. We have an outer prodyst from which we

know the expectatiof {s;s{’ } =Rss =1. Thus, we have another possibility

to transform (6.24) into a blind algorithm, namely

Wipr = Wi+ pe (T—ug £7(uy)) W, (6.26)

If we now apply thetranspose propertj2, 109], which is based on a stability
analysis of blind algorithms, we can replaaef* (u;) by g(u;) u” where

the nonlinearitieg,,,(.) have different characteristics than tfig(.). Loosely
speaking, iff,,,(.) is a nonlinearity which can separate a sub-Gaussian signal,
theng,,,(.) has to be a nonlinearity which can separate a super-Gaussian signal.
In doing so, we end up with

1—\
= 6.27
pe At (1= ufly (6.27)
Wit = Wi+ pe (I—glug) uf’) Wy (6.28)

We refer to (6.27) and (6.28) as BRLS1, wherg(.) is usually chosen as the
score functionpg,, (.) defined in (6.22).

Surprisingly, the update equation (6.28) without (6.27) is the well-known
natural-gradient learning algorithnproposed by Amarét al., which is one of
the most powerful algorithms known for blind source separation. Note, that
(6.27) and (6.28) were derived here in a completely different manner than the
one shown in [4].

The following comments can be made:

e The natural-gradient learning algorithm has the so-cadigdivariant
property, which says that in the noiseless case the convergence behav-
ior depends on the current global systéyp = W; A and not only on
A.
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e In fact, the RLS1-Wx is derived from the RLS1-Hx, which is an algo-
rithm for system identification and therefore adapis= W—! which
is an estimate ofA. In the system identification problem, the conver-
gence rate is independent of the mixing matixor A(z), as long as
the source signals,, are white and mutually uncorrelated. Hence, from
Chapter 2 we know that RLS1-Wx has a fast convergence behavior which
is robust against the conditioning of the mixing matAix As we merely
exchanged a non-blind error criterion with a blind one in the derivation of
the BRLS1, but not the part which controls the direction of the gradient,
it is not very surprisingly that (6.28), and therefore the natural-gradient
learning algorithm, reveals the equivariant property.

e The RLS1-Wx as well as the blind counterpart BRLS1 belong to the class
of so-calledserial-update algorithm§gl7], as we can reformulate (6.28)
recursively as

t
Wit = AW, - W, = ( . AWT) ‘W,  (6.29)

with AW, =T + g, (I — g(u,)uf?’). From Chapter 2 and Table E.7
we see that this is not a property of blind algorithms alone. In fact, all
algorithms for inverse modeling in Table E.7, which have their roots in
system identification, see Table E.3, belong to the class of serial-update
algorithms, and vice versa. They are originally designed to adapt an
estimateH = A and from applying the matrix-inversion lemma, they
become serial-update algorithms which adst= A—!. Recall from

the simulation examples in Section 2.10, that the serial update algorithms
for system identification showed slower convergence rates than the non-
serial ones.

6.5.2 General rules for transforming a non-blind algorithm
into a blind one

Nonlinearity To obtain not only mutually uncorrelated but mutually inde-
pendent output signals, we have to introduce at least one nonlinearity into the
update equation. The same is true for blind deconvolution to achieve not only
temporally uncorrelated but temporally independent output signals.

If f(.) andg(.) are two nonlinearities, we denote the output of the nonlin-
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earity as

ye £ f(uy) or g = g(ug) - (6.30)

The corresponding time-series in the@lomain is

T
y(2) & > ezt (6.31)

t=—"1y,

We prefer to writey(z) = > g(us)z ¢ thang(u(z)), because the latter denotes

a nonlinearity applied to a polynomial. The same is true for the frequency
domain, we prefeg(w) thang(u(w)), as we apply the nonlinearity in the time
domain and not in the frequency domain.

In the multichannel case, we define the output of the multichannel nonlin-
earity as

ye = f(uy) or ye = g(uy) (6.32)
Ym,t = fm(um,t) or Ym,t £ fm(um,t) . (633)
The corresponding time-series in the@lomain is

Ty
y(z) 2 Z vz ' (6.34)
t=—1y

Transformation As we have seen in Section 6.5.1, there is no unique trans-
formation of a nonblind algorithm into a blind one. In Table 6.1 we list some

possible replacements. However, there are often several possibilities and to see
which one has the best performance, one has to carry out some simulations or

try to analyze the stability conditions [2]. Note, that at least one nonlinearity
must appear in a blind update equation, otherwise the output signals will only
be uncorrelated, but not independent. Ttemspose property109] is also a
very useful tool to find a dual update equation. Finally, there is no guaranty
that an algorithm is stable and converges towards a global minimum.

Transforming an algorithm for multichannel inverse modeling to a multi-
channel blind-deconvolution algorithm is straightforward. The update equa-
tions for BSS, BD, and MCBD are given in Table E.11, Table E.13, and Ta-
ble E.14; they are the blind counterparts of those given in Table E.7, Table E.9,
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non-blind blind | blind 11
es=s—u ep=y—u ep=u-—y
y f(u) g(u)
S Yy u
u u Yy
Rss Ry, I
Rsu Ryu Ruy
Rus Ruy Ryu
Rxx W IR, W # o wWiw-#
Rux R, W H o WH
Ryu W R,, or W!

Table 6.1: Mapping of variables to transform an algorithm for inverse modeling into a blind
algorithm.

and Table E.10, respectively. Note, since the cost functions, and also the update
equations are originally formulated in the time domain, these algorithms do not
have a so-callegermutation problemwhich typically appears when the cost
function is formulated solely in the frequency domain in a bin-wise manner.
These algorithms presented here carry out the update in the frequency domain
only for efficiency reasons.
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6.6 Orthogonality principle and Bussgang prop-
erty

In Section 5.5.2 we have derived the optimal infinite-length Wiener filter with
the help of the orthogonality principR.(z) = 0 [85]. If we replace the
error signales by a blind error signaép; = f(u;) — u; or ep; = w; — g(uy),

and require again that the error-signal vector must be uncorrelated to the input-
signal vector, the orthogonality principle becomes

Rex(2) =0. (6.35)
For an infinite-length filteW (z) = >-°° W,z7" andeyp, =y; — u; we
have
Reyx(2) = Ryx(2) —Rux(2) =0 (6.36)
or
Ryx(2) = Rux(?). (6.37)

Postmultiplying both sides of (6.37) B () gives
Ryu(2) = Ruu(?) (6.38)

which is known as théBussgang property9]. Evaluating (6.38) for every
power ofz yields

Ryu. = Ruu, (6.39)
E{yiirui'} = E{ug,uf'}. (6.40)

From (6.37) and (6.38) it follows that
Ryx(z) = W(2)Rxx(2). (6.41)

In contrast to (5.108), (6.41) cannot be solved directlyW(z) because(z)
depends oiW (z) in a nonlinear fashion.

The Bussgang property can be used to build a blind cost function
Jg = | Ruu(2) — Ryu(2) | » (6.42)

with the appropriate choice of the nonlinearity. A modified version of (6.42) is
used in the natural-gradient learning algorithm, whBxg, (z) is replaced by
its expectation at convergenBg =1.
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6.7 Blind source separation (BSS)

Algorithm Update equations

Infomax [7] Wit = Wi+ u (W7 —yixf)

Natural gradient [4]] W1 = Wy + 1 (I— yuff) W,

EASI [17] Wt+1 = Wt + u (I — utufl + utyfl — ytqu) Wt

Table 6.2: Update equations for blind source separation.
This section is the “blind” counterpart of inverse modeling of an instantaneous-

mixing system, decribed in Section 2.5.

The update equations are given in Table 6.2 and Table E.11.

6.8 Blind deconvolution (BD)

Ny
/l
St a2) % Xy wi(2) Uy _

Yt

9(:)

Figure 6.2: Single-channel blind deconvolution. The filter(z) is adapted
such thaty(z) = w(z)a(z) ~ z~¢. The delayd depends partially
on the initial valuewy(z).

This section is the “blind” counterpart of the single-channel inverse mod-
eling problem decribed in Section 2.5. Blind deconvolution is also known as
blind equalization, which is more common in data communications.
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Batch learning algorithm for blind deconvolution
Definitions and initializatior{k = 0):

C>2T+1>2(Ty+ No) +1

L=2T,+1

X = (;vo,...,xTX,O,...,O,x_TX,...,x_l)T
X = diag (F x)
Wo = (wo,...,wNW,O,...,O,w,NW,...,w,l)T

W = diag (F W)
Py =FP_pn, N F!

For every iteratiork = 1,2, 3,. . ..

1. Filtering:
U, =W, X
u, = f)*TmTu F! diag (ﬁk)
= (Uo,...,U,TU,O,...,O,U_TU,...,U_l)T
2. Adaptation error:
Ye = g (ax)
= (y07"'7yTu70v"-70vy7Tu7---vy71)T

Y, = diag (F y5)
€p, = U — Y
Ebk = diag (F ébk)

3. Update equations:

A r+1 = any update equation from Table 6.3 or Table E.13

Wiy = diag (Pw diag (Wj,,))

(6.43)
(6.44)

(6.45)
(6.46)

(6.47)
(6.48)

(6.49)

(6.50)
(6.51)
(6.52)

(6.53)

(6.54)
(6.55)
(6.56)

(6.57)

6.

(6.59)

58)
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Block-wise learning algorithm for blind deconvolution
Definitions and initializatior{k = 0):
C>2Tx+1>2(Tu+Ny) +1 (6.60)
L=2T,+1 (6.61)
wo = (wo, - -, WN,,0,...,0,w_n,,--- ,w_l)T (6.62)
Py =FP_p, N, F! (6.64)
For every blockk = 1,2,3,...:
1. Filtering:
f(k = (ka, .. 7~75kL+TX70; “e 70;«TkL—TX; “e ,.’L‘kL_l)T (665)
Xk; = diag (F ik) (666)
U, =W, X (6.67)
u = P*Tu,Tu F! diag (Uk) (668)
= (ukL, . ,ukL_,_Tu,O, - ,O,UkL_Tu, - ,ukL_l)T (669)
2. Adaptation error:
Yi =g () (6.70)
= (WeLr- > Yk +T0 0o, O, YkL Ty Yk 1) (6.71)
&, = Uy — Vi (6.73)
Ebk = diag (F ébk) (6.74)
3. Update equations:
A r+1 = any update equation from Table 6.3 or Table E.13 (6.
Wit = diag (Pw diag (W) (6.76)

75)
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Algorithm Update equations

Infomax Wit = Wi+ p (W, 7 - Y, XH)

Natural gradienf Wy1 = Wy +p (I - Y, UH) W,

EASI Wi = Wi+ p (I- U, U7 + U Y - Y, U)Wy,

Table 6.3: Update equations for single-channel blind deconvolution.

6.8.1 Batch learning algorithm for blind deconvolution

This section is the “blind” counterpart to Section 4.4.2 and Section 4.5.2.

The whole batch learning algorithm for single-channel blind deconvolution
is given on page 168 from (6.43) to (6.59). Since we have all data available, we
adapt a non-causal filter.

The following comments can be made:

e The update equations are given in Table 6.3 and Table E.13.

6.8.2 Block-wise learning algorithm for blind deconvolution

This section is the “blind” counterpart to Section 4.4.3 and Section 4.5.3.

The whole block-wise learning algorithm for single-channel blind decon-
volution is given on page 169 from (6.60) to (6.76). The update equations are
givenin Table 6.3 and Table E.13. We adapt a delayed non-causal filter, the ori-
gin is shifted by a delay, to cope with a nonminimum-phase sysiemn The
comments in Section 6.8.1 hold also for the block-wise learning algorithm. A
MATLAB implementation of the algorithm is given in Appendix F. An alter-
native frequency-domain based blind deconvolution algorithm is presented by
Douglas and Kung in [35].
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Algorithm Update equations
Infomax Wi = Wi+ (W,;H — ?kaH)

Natural gradienf W1 = Wy + 1 (I - ?kﬁf) Wi

EASI Wit = W + 4 (1 _ U, U + U YY YUY ) W,

Table 6.4: Update equations for multichannel blind deconvolution.

6.9 Multichannel blind deconvolution (MCBD)

This section is the “blind” counterpart of the multichannel inverse modeling
problem decribed in Section 5.4.

6.9.1 Batch learning algorithm for multichannel blind de-
convolution

This section is the “blind” counterpart to Section 5.4.1.

The whole batch learning algorithm for multichannel blind deconvolution
is given on page 172 from (6.77) to (6.93). The update equations are given
in Table 6.4 and Table E.14. Since we have all data available, we can adapt a
non-causal filter.

6.9.2 Block-wise learning algorithm for multichannel blind
deconvolution

This section is the “blind” counterpart to Section 5.4.2.

The whole block-wise learning algorithm for multichannel blind deconvo-
lution is given on page 173 from (6.94) to (6.110). The update equations are
given in Table 6.4 and Table E.14. We adapt a delayed non-causal filter, the
origin is shifted by a delay, to cope with a nonminimum-phase syafem
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Batch learning algorithm for multichannel blind deconvolution

Definitions and initializatior{k = 0):

C>2Tx+1>2(Tu+ Nw) +1
L=2T,+1
Xm = (@m0, Tm, T 0, -, 0, T —13, - - - ,xm7_1)T
X = [X,,] = [diag (F x,,,)]
Wij70 = (wim, e ,wij7NW, 0, e ,0, wij,,NW, e ,wij,,l)T
Wi = [Wijo] = [diag (F%3;0)]
Py =FP_p, N F!
For every iteratiork = 1,2, 3,. . ..
1. Filtering:
Ur =W, X
ﬁsz: = PfTu,Tu F! diag (I_Jm,k)
= (Um0, - s Um, T, 0, -, 0, U, — 73, - - -, um7_1)T
2. Adaptation error:
S’ch =9m (ﬁme)
= (y’m«,O: - Ym, Ty 07 ) 07 Ym,—Tys - - - 7y’m7—1)T

?k = [Ym,k] = [dlag (F ym,k)]

ébch = ﬁmJi: - S’m,k
Ebk = I:Ebch] = [diag (F ébm,k)]
3. Update equations:

W;CH = any update equation from Table 6.4 or Table E.14
Wij i1 = diag (Pg diag (Wi ,41))

(6.77)
(6.78)

(6.79)
(6.80)
(6.81)
(6.82)
(6.83)

(6.84)
(6.85)
(6.86)

(6.87)
(6.88)
(6.89)
(6.90)

(6.91)

(6

(6.93)

92)
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Block-wise learning algorithm for multichannel blind deconvolution

Definitions and initializatior{k = 0):

C>2T+1>2(Tu+ Nu) +1 (6.94)
L=2T,+1 (6.95)
‘;\'/'z'j70 - (w,'jp, <oy Wi, Ny 0, - ,0, Wij,— Ny« - - ,’u}ij7_1)T (6.96)
Wy = [Wijo] = [diag (F Wij0)] (6.97)
Py =FP y,nF' (6.98)
For every blockk = 1,2,3,...:
1. Filtering:

im,k = (xm,kLa e T k4T 0y o5 0, T kL —Tys - - - ,;L‘chL_l)T
(6.99)
Xy = [Xon,k] = [diag (F X x)] (6.100)
Uy =W, X, (6.101)
T = Pog, 0, F ' diag (Upn i) (6.102)

= (Wm,kL, - > Um kL+Ty> 0y - -, 0, Uy kLT, - - - ;Um,kL—l)T
(6.103)

2. Adaptation error:

Ymk = Gm (Tm k) (6.104)

= (ym,kL, ey YmkL+Ty 07 v v07 Ym,kL—Ty5 -+ vym,kal)T
(6.105)
Yi = [Youi] = [diag (F §nx)] (6.106)
8, 5 = Sk — T i (6.107)
Ep, [Ebm7k] = [diag (F &b k)] (6.108)

3. Update equations:

W;CH = any update equation from Table 6.4 or Table E.14 (6.1

Wij i1 = diag (Pg diag (Wi 11)) (6.110)

09)
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6.10 Blind decorrelation

In case we only wish to achieve decorrelated but not necessarily independent
output signals, e.qg., prewhitening of the input signals, we replace the nonlinear-
ity g(.) by a simple linearity. As a consequence we then hgye=u, ;. This
substitution can be applied for all aforementioned blind algorithms: BSS, BD,
and MCBD. Hence, we obtain either spatially uncorrelated output signals, and /
or temporally uncorrelated output signals. For a detailed analysis of algorithms
for blind decorrelation see [31].

6.11 Automatic gain control

The simplest blind algorithm is an automatic gain control, see also Fig. 1.5. If
we deal with real valued signals and gains only, there is no need to use a hon-
linearity for an AGC. Second-order statistics are sufficient here. However, in
a complex-valued system, e.g., in the baseband representation of a communi-
cation system, the use of a nonlinearity can help not only to adjust the gain of
the output signal, but also to control the phase of the output signal [8, 78]. The
nonlinearity is split into a function of the real and imaginary part, and not only
of the absolute value af;. The real and imaginary parts of the output signal
can then be forced to be as independent as they can possibly get, resulting in
the original constellation up to a rotation of a multiplergf2. Algorithms for

an AGC with phase control are given in Table 6.5 and Table E.12.

Algorithm Update equations

Infomax Wil = W + @ (w;* — ytw,f)

Natural gradient] wy+1 = wy + p (1 — yeuf) we

EASI Wit = wy + p (1 — uguf + wyf — yeuf) wy

Table 6.5: Update equations for AGC.
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6.12 Decomposition of the global system

6.12.1 BSS: Decomposition of the global-system matri

We now wish to analyze the behavior of the interchannel interference of the
global system. To this end, we decompose the global-system ntatsixWA
in different ways

G=G°+G (6.111)
=W°A + (W - W°A = W°A + WA = (W°+ W)A  (6.112)
=PD+PD=(P+P)D (6.113)
=PD + PED = P(I + E)D = PED (6.114)

whereW = W — W°, W° is a perfect separation matri®, a permutation
matrix,D a complex-valued diagonal matrik,a matrix with unity in the main
diagonal, and = E — I a matrix with zeros in the main diagonal. The source
signals propagate vi@ to the outpuis, whereG° andG describe the desired
propagation and the interchannel interference, respectively. Sifice PD,

GP° has to have full ranlkd/s and only one non-zero element per row and col-
umn. Furthermore, we constrain tiiés non-zero entries 06G° to coincide
with those ofG with the same index. Henc&® = [¢%] andG = [3;;] can be
written as

9 = {gzi | : o_t:e(ri/zlise (6.115)
and

9 = {SJ oghe_rvi/ri:e) (6.116)
where the permutation (¢) of the set\ = {1, ..., M} is a one-to-one map-

ping of M onto itself [25].

Since we wish to minimize the interchannel interference at the outghe
Ms non-zero entries iG° are chosen such as to minimité|| - for a given
G. Alternatively, the problem of findingx® which minimizes||G|| can be
reformulated as finding a permutatierii) out of the /! possible ones, which
minimizes||G ||, i.e., if G happens to be diagonal dominant, th@f is a
diagonal matrix containing the main diagonal@fas its own main diagonal,
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i.e.m (i) = i. Furthermore, from (6.111) and (6.115) we have

IGlI% = IG - G°ll% (6.117)
= Z |gij|2 = Z |gij|2 - Z |gi,7r(i)|2
i, %7 A
= IG[l7 — IG°|f3- (6.118)

This means that finding a permutatier(i) that minimizes||G|| is equiva-

lent to finding a permutation (i) which maximized|G°||» under the given
constraints (6.115) on the choice @°. OnceG° andG are determined, the
factorization in (6.114)G°=PD, is easily evaluated ard=P7 GD~".

In the case of perfect separati@ vanishes and therefof@= G°=PD =
WPA. The optimal solution for the separation matrix is then

W°=PDA !, (6.119)

a row-wise scaled and permuted version of the inverse system. Since we are
interested in waveform-preserving estimates of the source signals, scaling and
permutation of the output signals does not affect an optimal solutionGith

0. In the communications literature, such a solution would be described as zero-
forcing [51]. A zero-forcingalgorithm tries to force all elements 6f to zero

and therefore focuses on perfect separation rather than high igpad-to-
interference-plus-noise rati(GINR). The terminology of zero-forcing is more
common in the field of blind deconvolution for the case where one merely wants
to minimize intersymbol interference, regardless of any additive noise.

6.12.2 BD: Decomposition of the global-system filteg(z)

In a similar way to the decomposition & in Section 6.12.1, we can decom-
pose the global-system matiXz) = w(z)a(z) in different ways

0(2) = () + 3(2) (6.120)
= w(z)a(z) + (w(z) — w°(z))a(z) (6.121)
=w’(2)a(z) + w(z)a(z) = (w°(z) + w(z))a(z) (6.122)
= de) + () d(z) = (1+ () d(2) (6.123)
=d(z) + €(2)d(z) = (1 + €(2))d(z) = e(2)d(z) (6.124)
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whereg®(z) =d(z) =d’'z~" consists of a single term. Note that in the single-
channel case, we have no permutation indetermination of the output signals.

6.12.3 MCBD: Decomposition of the global-system matrix
G(z)

In a similar way to the decomposition & in Section 6.12.1, we can decom-
pose the global-system mati@&(z) = W(z)A(z) in different ways

G(2) = G°(2) + G(2) (6.125)
=W°2)A(z) + (W(z) — W°(2))A(z) (6.126)
= W(2)A(2) + W(2)A(2) = (W°(2) + W(2))A(z)  (6.127)
=PD(2) + P(2) D(z) = (P + P(2)) D(2) (6.128)
=PD(2) + PE(2)D(z) = P(I + E(2))D(z) = PE(2)D(2).

(6.129)
P is again a permutation matrix arfd(z) = diag [d}z™™,.. .,d’Msz—TMs].

Furthermore(G°(z) has full rank and only one term per non-zero element.

6.13 Performance measures for blind identification

With the use of blind signal processing algorithms, we are more interested in
wave-form preserving estimates of the signals, than in their exact amplitude or
phase. We will therefore measure the performance of a blind algorithm on the
residualinterchannel interferenc@CI) or the intersymbol interferenc@Sl).
Alternatively, we could also use tlsggnal-to-interference rati¢SIR), or in the
noisy case thseignal-to-interference-plus-noise rat{8INR).

6.13.1 Blind source separation

Ideally, the global system matri& = WA in (6.111) would have one non-zero
entry in each row. |g;;|* is the power transfer from sourgeto the output.

In each row: there will be one dominant entry, whetexx; |g;;|? indicates the
power transfer of the separated soujce
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The other entries of the same ravof G, which end up being non-zero
in a realistic case, if squared and summed, reveal the power of other sources
leaking through to the specific outpi)if all sources have equal power and are
mutually uncorrelated. Vice versa, by squaring the subdominant entries of the
same column ofx, we get the power of one source leaking through to differ-
ent outputs. Provided the same-source lock-on effect is not a problem for the
algorithm under consideration [70], the row-wise observation of the permuta-
tion matrix is more meaningful than the column-wise observation, rendering
the performance index into a measurergérchannel interferenc@CI) [59]

Z |9U| - rnax |gw|
1
Jici(G Z =

(6.130)

max |9i; |2

Of course,Jici(G) is available in a simulation environment only. In practical
situations, the true matriA and therefore the matrige are unknown.

6.13.2 Single-channel blind deconvolution

In the BD case, the performance measure should reflect the deconvolution ca-
pability, hence indicating to what extent the deconvolved signal is influenced by
adjacent samples of the same signal (convolutive noise). Recall that the global
system response is defined@s) = w(z)a(z) = >~ ___ gnz ™. Similarly

to (6.130), theéntersymbol interferenc@Sl) can be defined as

Z |gn|2 - mr?“x|gn|2 Z |gn|2
Jisi (9(2)) = —= > === 1. (6.131)
max |gy| max |gy|

For finite impulse responses, the infinite sums in (6.131) are reduced to finite
sums.

6.13.3 Multichannel blind deconvolution

For the more general MCBD case, we are interested in both measures (6.130)
and (6.131). We denot&(z) as the matrix of filter polynomials in of the
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o0

global system response with entrigs(z)];; = g:j(2) = >, _ . Gijn? "
being the global filter response between soyr@ad outputi. Then we can
find the averaged ICI as

M

u Z \9ij.nl?

1 =
Jici(G(2)) = Z’ Shi— ~1. (6.132)

= max Z |gijnl®

n=—oo

Jici is also a meaningful measure for algorithms which only separate the source
signals but do not attempt to deconvolve them.

For the calculation of the averaged ISI, each row of the permutation matrix is
searched for the entry containing the filter with the most energy. By calculating
the ISl of these entries and averaging over all rows, we get

Z |gi,(argmax]- En|gij‘n|2),n|2
Jisi(G MZ —— ~—1.  (6.133)

mgx |gi,(arg max; 2, laij,n1%). n|

An alternative measure reflecting both averaged ISI and ICI was defined in [70]

M .
Iucasi(G(2)) = i Z —1. (6.134)

If (6.132) and (6.133) are only calculated row-wise, rather than averaged over
all rows, a simple relationship between them and (6.134) can be found

Jvcsirow—i = Jict row—i T st row—i + Jict row—i * ISl row—i - (6-135)

If Jici row—; @and Jisiow—; are small values (good separation and deconvolu-
tion), Jmc-isirow—; 1S roughly equal to the sum of these two measures. The
corresponding results are obtained for a column-wise analysis.
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6.14 Simulations

6.14.1 Blind source separation

The simulation setup is as follows: The mixing matrix has the condition num- 5
bery (A) = 10 and logarithmically distributed singular values. Thig = 10

source signals are Laplacian distributed with unity power. Sensor noise has
on = 0.01 which equals—40 dB SNR. We used a block-wise update with
block lengthL = 100. For the comparison we used the natural gradient, the
BLMS2b, and the Infomax learning algorithm. The step sjzegere 0.3, 0.3,

and 0.7, respectively, and are chosen to achieve the fastest convergence be-
havior, without becoming unstaple. The performance curves are shown in Ta- —20, 50 100 150 200 250 300
ble 6.3. Among the three algorithms, the Infomax algorithm has the slowest iteration
convergence rate. However, it is well known, that the Infomax has its best

performance for unitary mixing matrices, i;e(A) = 0.

Jo [0B]

50 100 150 200 250 300
iteration

_ZO I I I I I
0 50 100 150 200 250 300
iteration

Figure 6.3: Performance curves of blind source separation: (from top) natural
gradient, BLMS2b, and Infomax.
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6.14.2 Blind deconvolution

The unknown system is the same as for the system identification example in
Section 4.8.1 with|a(z)|| - = 1. The simulation parameters are: The source
signal is Laplacian distributed withy = 1, the sensor noise is white Gaussian
distributed witho, =0.01 (—40 dB SNR). The non-causal deconvolution filter
w(z) hasNy = 300, where the filter coefficients were initialized using a center-
spike strategy, i.ewo(z) = 1. Further parameters ar&x = 1000, N,, = 300,

Ty, = Ty — Nw = 700, block sizeL. = 2T, + 1 = 1401, and the FFT size

C = 2048. The Bussgang nonlinearity igu;) = v/2sign(u;). We use no
prewhitening of the input signal(z).

Jgr () 18]

The parameters of the algorithms are —20] 50 100 150 200 250 300
block k

BLMS1c p=0.1

BLMS2a p=0.1

BLMS2b px=0.1

BLMS3 @ =0.1  almost no convergence

BLMS4 1 =0.03 almost no convergence (Infomax)
BRLS2 A=0.8

BRLSla A =0.8 ‘ ‘ ‘ ‘
BRLS1b A =0.8 2% 50 100 150 200 250 300
BRLS1C A =038 block k
Nat. grad. p = 0.05
EASI u=0.05

Jgr () 18]

The performance curves dfs; are shown in Fig. 6.4 to 6.6.

3o ) 18]

_20 I I I I I
0 50 100 150 200 250 300
block k

Figure 6.4: Performance curves of blind deconvolution: (from top) BLMS1c,
BLMS2a, and BLMS2b.
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o
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_20 i i i i i E‘
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block k 2
10 &-
law]
@ O _20 i i i i i
= 0 50 100 150 200 250 300
< block k
#-10
—
_20 i i i i i E‘
0 50 100 150 200 250 300 S8
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lav]

-20 1 1 1 1
0 50 100 150 200 250 300
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Figure 6.6: Performance curves of blind deconvolution: (top) Natural gradient,
(bottom) EASI algorithm.

_20 I I I I I
0 50 100 150 200 250 300
block k

Figure 6.5: Performance curves of blind deconvolution: (from top) BRLS1a,
BRLS1b, and BRLS2.
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6.14.3 Multichannel blind deconvolution

20
m  OF 1
3, \
n§—20— : L\ e
_40 I I I I
0 20 40 60 80 100
iteration k
20,
m O b
k=3
~Z200 : ]
_40 i i i i
0 20 40 60 80 100
iteration k

Figure 6.7: Channel-wise performance curves of BRLS2 in a multichannel
blind deconvolution setup: (top)ci(k), (bottom)Jisi(k).

We use the same unknown convolutive mixing matrix as for the multichan-
nel inverse modeling in Section 5.7.2. The simulation parameters\aye: 4
source signals which are Gamma distributed with= 1, M = 4 sensors with
additive white Gaussian sensornoise with=0.01, The non-causal separation
matrix W (z) hasNy = 100 and was initially set tdW(z) = I + W{(z),
where the coefficients oW'(z) are small random numbers. This makes a
total of 4 - 4 - 201 ~ 3200 filter coefficientsw;;, to adapt. We use the
BRLS2 algorithms given in Table E.14 with, = 2000, 7, = 1900, block
length L = 3801 and FFT sizeC' = 4096. The Bussgang nonlinearities are
gm(ut) = V/2sign(u,,.). We use no prewhitening of the input signai).
The parameters of the algorithm are

BRLS2 A =0.8

The channel-wise performance curves are given in Fig. $d.and Jis| are
defined in (6.132) and (6.133), respectively.
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6.15 Summary

In this chapter we extended the non-blind algorithms of the previous chapters
to work also in a blind environment, where the algorithm has no access to the
source signals. Guidelines are given how to modify an algorithm when a non-
blind error criterion is exchanged with a blind error criterion. In doing so, we
have also shown an alternative derivation of the well-known natural-gradient
learning algorithm.

Nonlinearity =~ Simulations have shown that the separation capability of a blind
algorithm is almost unaffected by small deviations of the nonlinearft{gsor

g(.) from their respective theoretical forms. In fact, the knowledge whether the
pdf of a source signal is super-Gaussian (more peaky than a Gaussian pdf) or
sub-Gaussian (flatter than a Gaussian pdf) is usually sufficient for a suitable
choice of the nonlinearity.

Non-Gaussianity of the source signals The “closer” the sources are dis-
tributed to a Gaussian distribution, the “harder” the problem becomes, e.g.,
source signals which are Gamma distributed are easier to separate and decon-
volve than signals which have a Laplacian distributian=3). One possible
measure of the closeness to a Gaussian distributon is the kutto$ia sig-

nal, defined in (6.9). In the extreme, when all source signals are Gaussian
distributed ¢ =0), no separation or deconvolution is possible.

Simulations Simulation examples are presented, where many hundreds of
filter coefficients are adapted, showing the performance behavior of some of the
proposed algorithms. In fact, not all MCBD algorithms showed convergence.
For some update equations, the difficulty of finding a stable equilibrium point
is too high, due to the many coefficients which have to be adapted.

Same-source lock on One problem that sometimes comes up in blind source
separation is that a source signal appears at several outputs,. The so-
calledsame-source lock-goroblem can be detected by analyzing the row-wise
andcolumn-wise ICI of the global-system mat«ix [70]. However, these mea-
surements are available in a simulation environment only. In a real-world ap-
plication, we have to monitor the determinan®Wf. A small value ofdet W is
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an indication that a same-source lock-on problem is present. Some BSS algo-
rithms are robust against the same-source lock-on problem, e.g. , the infomax
algorithm, which contain® —! explicitly in the update equation, the natural
gradient algorithm, and also the EASI algorithm.

6.15.1 Further topics in blind identification

In the following, we mention some topics related to blind identification.

BD realization in the time domain

In many real-time applications in acoustics, a low processing latency is impor-
tant, e.g. hands-free telephone. The block-wise processing of the data intro-
duces a latency delay @fl. samples (2 blocks) for balanced processor load.
One block is required for collecting the new samples and giving out the com-
puted output samples, a second block delay is used for computing the filtering
and adaptation. Thus, the overall group deladlissamples plus the group de-

lay of the filter. To reduce the overall delay, one can use a small blocl{size
remain in the time domain. In fact, the algorithms proposed for BD and MCBD
can also be realized in the time domain. The filtering and the adaptation are
carried out at the sampling rafe=1 and not at the block rate. However, from
simulation examples it seems that a block-wise processing of the data helps
achieve a faster convergence of blind algorithms. An online learning algorithm
for BD and MCBD which is based on the natural gradient and realized in the
time-domain was given in [5, 6, 34]. See also the MATLAB example in [71].

Direct estimation of the mixing matrix

We can also transform an algorithm for blind source separation to directly es-
timate the mixing matrixA instead of the inverse mixing matr®v = A1,

see also [27]. As an example we take the natural-gradient learning algorithm
shown in Table 6.2. Inverting both sides of the update equation and using the
matrix-inversion lemma (A.5), witA' = W, £ H;', B’ = p (I - y,uf?),

C’' =1,andD’ = W, gives

Ht+1 = Ht — /,Lth (I —¥Y: llth) [I + 1253 (I —¥Y: l.ltfl):l_1 . (6136)
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Algorithm Update equations
Infomax Ht+1 =H; — ,th (H;H — th{{) H;

Natural gradient H;,, = H; + pH; (I — y;uf)

EASI Ht+1 = Ht + l,LHt (I — lltlltfl + lltytfl — ytlltfl)

Table 6.6: Update equations for direct estimation of the mixing matrix whEre= A and
—1
xt=H, "ut.

For small values ofi; we can either expand the matrix inverse in (6.136) with
(A.12) or replace it by the unity matrix in the latter case. We obtain

H;yy =H; — pHy (I -Vt uf{) (6.137)

which is again a serial-update equation, but this time with multiplication from
the right, i.e. Hyy1 = H; AH, with AH, =T — p; (I — y; uf?). Adapting

H directly with (6.137) might be advantageous in the convolutive case. If the
elementsy;;(z) of the mixing matrixA(z) have only a few terms, theH(z)

needs only a few terms for the adaptation as well. However, we still have
to invert H(z) after every update step, because the output sequence is then
u=H"1(2)x(2).

Using the same steps we can also transform the other algorithms given in
Table 6.2. The resulting adaptation equations are listed in Table 6.6.

Overdetermined blind source separation

Most algorithms for BSS and MCBD assume a fully determined system, i.e.,
the same number of sensors as source signals. We refer to the situation where
more sensors than source signals are preseavesletermined blind source
separation(M > Ms). Basically there are two different approaches. One is to
directly find an algorithm which copes with this situation. Another possibility

is to first apply a preprocessing stage withinput and/s output signals, and

then build the input signals of a subsequent stage, e.g., an ordinary Ms

BSS algorithm. Such a two-stage approach with a PCA (principle component
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sources separ ated sources

® noise mixture

mixing process Sensors PCA  virtual sensors ICA

Figure 6.8: Two-stage approach for overdetermined blind source separation
with Mg = 2 sources and/ = 5 sensors: First stage PCA, second
stage ICA.

analysis) preprocessing stage is shown in Fig. 6.8, [60]. The PCA stage di-
vides thelM -dimensional input space into ads-dimensional signal-plus-noise
space and atM — Ms)-dimensional noise space. The fifdt, virtual sensors

are then used as the input signals of a subsequent ICA (independent compo-
nent analysis) stage. Overdetermined blind source separation is also known as
undercomplete-bases problem

Underdetermined blind source separation

The case where fewer sensors than source signals are Wsed {/) is cer-

tainly one of the big challenges in the field of ICA. If the source signals have
non-overlapping spectra, the task can easily be solved in the frequency do-
main. However, if they have overlapping spectra, then other methods have
to be used. Algorithms founderdetermined blind source separatiare de-
scribed in [1, 73, 74]. Underdetermined blind source separation is also known
asovercomplete-bases problem

Mixture of sub- and super-Gaussian source signals

Most algorithms for BSS require prior knowledge, such as whether the source
signals are sub- or super-Gaussian to select a proper nonlinearity in advance. If
in the signal mixture the number of sub- and super-Gaussian source signals are
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known, often two different types of nonlinearities have to be used in the update
equations. However, if the characteristics of the source signals is unknown, the
blind algorithm has to estimate them online, e.g., by using parametric models
of the source-signal pdfs. Algorithms which separate a mixture of sub- and

super-Gaussian source signals are given in [32, 79].
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Concluding remarks

7.1 Conclusions

In acoustics, the transfer function between a source and a sensor is usually mod-
eled by an FIR filter with hundreds or thousands of coefficients. This makes the
proposed algorithms for the multichannel convolutive-mixing case to be suit-
able for acoustical applications, e.g., the combination of speaker separation and
dereverberation of speech signals in a teleconferencing setup. However, in this
work we have not discussed how to make the algorithms also operate success-
fully in a real environment. Many of the algorithms have been shown to perform
well in a controlled simulation environment. In practice, several assumptions
will certainly not be fulfilled and therefore influence the performance behavior
of the algorithms, e.g., in stereophonic echo cancelling the source signals are
strongly correlated. Thus, further research still has to be done to analyze the
behavior with real-world signals.

7.2 Outlook and further directions

In this section, we list several topics related to blind and non-blind adaptive
filtering that are subject of ongoing research:
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7.2.1 Second-order statistics

Throughout this thesis we have assumed, that for blind algorithms the source
signals are stationary but non-Gaussian. Because of the stationarity, second-
order statistics are not capable of separating and deconvolving the source sig-
nals. However, second-order statistics can be sufficient for signal separation in
the following cases:

e The source signals are nonstationary [63,86—88,107],

e the source signals are mutually independent but temporally correlated
[10,56,80,82],

¢ the source signals are cyclostationary [103, 104].

Whereas the first two situations appear in an acoustical environment, the last
one is often true in data communications.

7.2.2 Filter partitioning

A further step towards reducing the computational burden of multichannel adap-
tive filtering can be to introduce filter-partitioning techniques [97, 99]. Similar
to the overlap-save techniques, where the input sequence is partitioned into
non-overlapping blocks, the filters can be partitioned as well. In doing so, the
block sizeL can be reduced significantly without increasing the computational
complexity very much. Moreover, a smaller FFT size can be chosen, which
can even be smaller than the filter length. Filter partitioning is a technique of-
ten used in single-channel acoustical echo canceling [81]. Efficient methods
for multichannel filter partitioning and cascading two or more systems in the
partitioned frequency domain are given in [62].

7.2.3 Step-size control

Often adaptive algorithms reveal a poor performance behavior in a real environ-
ment, although they work well in simulation examples. The reason is that many
underlying assumptions from theory are not fulfilled in reality, e.g., stationar-

ity is probably not an adequate assumption for speech signals. In order to still
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obtain a satisfactory behavior of the adaptive algorithm, we have to perform on-
line monitoring of certain signals for the proper adjustment of the step size [6].
For example, if we detect a change of the system, we increase the step-size to
track the new situation. Or, if we know that the algorithm performs well, then
we can reduce the step size. Note, that the Kalman filter has such a step-size
control incorporated inherently in the update equations. Hence, knowing the
current environment is of great value for controlling the adaptive algorithm.

7.2.4 Bootstrap

One of the big problems of blind algorithms is their relatively slow convergence
rate, especially in the initial stage. Whereas non-blind adaptive algorithms re-
veal a steady decay of the performance curve from the beginning, blind algo-
rithms tend to show a poor initial performance. It is like searching for a mouse
hole on a soccer field: once you see the hole, you know in which direction you
have to walk. Thus, if one can find a bootstrap technique which can accelerate
the initial performance behavior, the overall convergence rate can be improved
significantly.

A method for BD or MCBD which has shown to be useful in simulation ex-
amples is to use a time- or performance-dependentfilter lekigth). Initially
we start to adapt a short filter, then enlare the filter length steadily with time.

Another technique which we refer to data re-usingis to carry out several
update steps with the same data block. This is some sort of combination of a
batch and a block-wise learning algorithm. The underlying idea comes from
(6.41) which is in fact a nonlinear equation for the separation m&t#ix) and
has to be solved iteratively.



Appendix A

General results

A.1 Differential entropy

Thedifferential entropyof a probability-density functiop, (u) is defined as

mené—/wmmwmwm (A1)
= —E {log puy(u)} (A2)

with H(py(.)) > 0.

A.2 Kullback-Leibler divergence

The Kullback-Leibler divergencer relative entropybetween two probability-
density functiong (u) andps(s) is defined as [23]

D (0O 1p00) 2 [ o) log 24 d (A3
_ o pu(u)
=F {1 g ps(a) } (A.4)
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whenever the integral exists. Propertiesdt.||.) areD (pu(.)||ps(.)) >0
with equality iff py (.) = ps(.) almost everywhere, anB (py (.) || ps(.)) #
D (ps() llpu(.))-

A.5 Matrix-inverse expansion

Under the assumption that the matfixhas a spectral norm smaller than 1
(o1 < 1), [51] the following matrix expansion holds

A.3 Matrix-inversion lemma

M-& 7 =1+) b= &t (A.12)
k=1 k=0
If A’ andC'’ are nonsingulad/ x M and N x N matrices, respectively, the
following equality holds [50, 65, 75]: Proof: Premultiply both sides of (A.12) wiffi — £]. O

—1
[A'+BCD] =AT - AT [CT DA DA

A5 .
(A5) A.6 Matrix inverse
Proof: Premultiply both sides of (A.5) witA’ + B'C'D’]. O
The inverse of a nonsingular square matki>xcan be derived using the follow-
A.4 Inverse of a block matrix Ing closed form expression [65]
AL AdiA (A.13)
If A—1 andD~! exist, then we have [65] det A
A o1t AL 0 whereadj A is theadjoint or adjugateof A anddet A is the determinant of
] = l . . . ] (A.6) A. The elements of the adjoint matrix are caltafactors
C D D'CA~! D
and [adj A],,,, = (=1)""" det (A(um)) - (A.14)
A B! A-! A-BD! The submatrixA (,,,,,) is obtained by deleting theth row and thenth column
o D = 0 D-! (A7) of A. Note,det(A () =det((AT)(1nn)) is called thenmth minor of A.,
If A~! exist, then we have
A B! Al+EA'F _EA-! Inverse of a polynomial matrix Likewise to ordinary matrices, the inverse
- l ] (A.8) of a polynomial matrix can be written as
C D —~A~F AL
. - djA(z)
A~l(z) = 292 A.15
with (2) det A(2) ( )
A=D-CA™'B A.9
(A.9) with
E=A"'B (A.10)

F=CA™ L. (A.11) [adj A(2)],,,, = (=1)"" " det (A(m)(2)) - (A.16)
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A.7 SVD — Singular Value Decomposition

SVD of a matrix One of the most powerful tools from Linear Algebra is
thesingular value decompositigf8VD) of a matrix. A matrixA™*" can be
written as

0
A:UEVH:Ul ]VH (A.17)
0 0

whereU™>™ andV™*" are unitary matrice®,”* " is a rectangular diagonal

matrix, andﬁkx}c is a diagonal matrix of full rank. The diagonal element&of

andX. are the ordered singularvalues > ... > o, > o1 =... =0, =0

if m > n > k andk is therank of A. The SVD is very helpful in analyzing
transformations from one space to another, whereas the eigenvalue decomposi-
tion (EVD) is more useful in analyzing a transformation from a space to itself,
e.g., state-space model of a dynamic system.

SVD of a polynomial matrix The idea of a SVD of a scalar matrix can be
extended to polynomial matrices.

X(z) 0
0 0

A(2) = U(2)2(2)VH(2) = U(2)

] VH (2) (A.18)

whereU(z)™*™ andV (z)™*" areparaunitary matricesX(z)"™*" is a rect-
angular diagonal matrix, arld(z)*** is a diagonal matrix whose elements are
nonzero. A paraunitary matrix has the property that

U(z)UH(2) = UH(2)U(z) =1. (A.19)

As a consequenc&®] ~!(z) = U (z) = UL (z71). In other words, the matrix
U is transposed, the elementg ;, are complex conjugated and the polynomi-
alsu;;(z) are time reversed, i.ez,is replaced by —!. Paraunitary matrices are
the multidimensional extension of allpass filters.

The filterso;(z) on the diagonal oE are symmetric, linear-phase filters,
oi(z) = o;(271). To make the matriZ(z) unique, a metric has to be specified,
sorting the diagonal elements¥{z), e.g. by using|o;(2)]| -

A.8. Pseudoinverse 201

A.8 Pseudoinverse
Pseudoinverse of a matrix Let the SVD ofA be as in (A.17). Théloore-
Penrose pseudoinversé A is defined as

A# 2y y#yul (A.20)

whereXZ# is the transpose @& in which the positive singular values &f are
replaced by their reciprocals. Note, that! = VX ' UH,

Pseudoinverse of a polynomial matrix Letthe SVD ofA(z) be asin (A.18).
We define the pseudoinverse of a polynomial makix) as

A#(2) 2 V(2)Z%(2) U (2) (A.21)

whereZ# (z) is the transpose dE in which the nonzero diagonal elements
0i(2) of £(z) are replaced by their inversg ' (z). The regular inverse is
defined asA 1 (z) = V(2) 27 (2) UH(2).
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The trace function

B.1 Definitions

The Frobenius norm and the trace of a matrix are denotéjd pyandtr (.), re-
spectively.a = diag (A) is a vector whose elements are the diagonal elements
of A anddiag (a) is a square diagonal matrix which contains the elements of
a. ddiag( A ) zeros the off-diagonal elements Afand

off(A) = A — ddiag(A) (B.1)

zeros the diagonal elementsAf For a square matriA we haveldiag( A )=
diag (diag (A)).
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B.2 Basic properties of the trace function

Basic properties of the trace function:

tr(cA) = ctr(A) (B.2)
tr(AT) = tr(A) (B.3)
tr(A*) = (tr(A))* (B.4)
tr(Af) = (tr(A))* (B.5)
tr(A) = An(A) (B.6)
tr(A*) =) A5 (A) (B.7)
tr(AB) = t;n(BA) (B.8)
tr(ABC) = tr(CAB) = tr(BCA) (B.9)
tr(A + B) = tr(A) + tr(B) (B.10)

Frobenius norm and trace function:

A7 2 tr (AHA) (B.11)

loff (A)I7: = [|AIl7 — llddiag( A)]I7 (B.12)

tr (A ddiag( B)) = tr (ddiag( A ) B) (B.13)
= tr (ddiag( A ) ddiag(B)) (B.14)

tr (off (A ) ddiag(B)) = 0. (B.15)

B.3. Basic properties of the determinant
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B.3 Basic properties of the determinant

Determinant of a square matriA/*M BMxM):

det(A H Am

det(A*) = HA’“

det(AT) :det( )

det(A*) = (det(A))*

det(cA) = M det(A)

det(A*) = (det(A))*

det(AB) = det(BA) = det(A) det(B)

(B.16)

(B.17)

(B.18)
(B.19)

(B.20)

(B.21)
(B.22)
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B.4 Derivatives with respect to a real matrix

The partial derivative of a real scalar functid(iX) with respect to a real matrix
X is defined as

[%{J(X)} - = %‘;(:3 : (B.23)

We have the following partial derivatives, see also [47]
aix tr(X) =1 (B.24)
aix tr(AXB) = ATB? (B.25)
aix tr(AX"B) = BA (B.26)
aix tr(XX) = 2X7 (B.27)
aix tr(X7X) = 2X (B.28)
aix tr(X*) = & (XT)k-1 (B.29)
aix tr(XAXB) = ATXTBT + BTXTAT (B.30)
aix tr(X’AXB) = AXB + ATXB” (B.31)
aix tr(XTAXTB) = AX"B + BXTA (B.32)
aixtr(xﬂ) = —(xx " (B.33)
aix tr(AX"'B) = — (X"'BAX )" (B.34)
; aix tr(eX) = X" ) (B.35)
X tr(e®*P) = (BeA¥PA) (B.36)
aix det(X) = adj(X?) = det(X) X1 (B.37)
aix det(AXB) = det(AXB) X7 (B.38)
aix log(| det(X)[) = ﬁ(xmix det(X)=X T (B.39)
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We can expand a real functioh(X) aroundX as
J (X +dX) =J(X)+ (& J (X),dX) + O(||dX||%) (B.40)

with (A,B) £ tr (ABT). For a real-valued matriX, the gradient is defined
as

90

VxJ(X) £ X

J(X). (B.41)

B.5 Derivatives with respect to a complex matrix

After Brandwood [14], we can define the partial derivatives of a scalar function

J(X) with respect to a complex matriX as

] 2 (T ) e
{%J(X)]mn e %(%ﬁ:‘ﬂ%ﬁ?) (B.43)

whereX =[] With @, £ 278, + j 2T

We can expand a complex-valued functid(X) aroundX as

J (X +dX) =J(X)+ (& J (X),dX*) + (52 J (X),dX ) + O(||dX||3)
(B.44)

with (A,B) £ tr (AB#). After Haykin [51], thecomplex gradient matrigan
be defined as

0

VxJ(X) £ 2o

J(X). (B.45)

See also [102] for a nice treatment of this subject.

Ipersonal notes from Heinz Mathis
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We have the following partial derivatives with respecio

OiX tr(X) =1
9 tr(X?) =0
X
aix tr(AXB) = ATB”
aix tr(AX"B) = BA
aix tr(AX*B) =0
aix tr(AX?B) =0
aix tr(XX) = 2X”
aix tr(XX") = 2X
aix tr(XX*) = X4
aix tr(XX*) = X~

a Ey T\ k-1

0 ok
X (X)) =0
aix tr(XAXB) = ATX"B? + BIXTAT
0 H _ T~rxpT
9 HAwHRY _
o)

(X" = - (X7'x )"

X
aixur(AxﬂB) = - (x'BAx )"
aix tr(eX) = X'
aix det(X) = adj(XT) = det(X) X~ T
d

il — -T
7 (et(AXB) = det(AXB) X

(B.46)
(B.47)
(B.48)
(B.49)
(B.50)
(B.51)
(B.52)
(B.53)
(B.54)
(B.55)
(B.56)
(B.57)
(B.58)
(B.59)
(B.60)
(B.61)
(B.62)
(B.63)
(B.64)
(B.65)

(B.66)
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We have the following partial derivatives with respeciXo:

% tr(X) =0 (B.67)

ai* tr(XH) =1 (B.68)

% tr(AXB) =0 (B.69)

% tr(AX'B) =0 (B.70)

% tr(AX*B) = ATB? (B.71)

% tr(AX#B) = BA (B.72)

. tr(XX) =0 (B.73)

% tr(XXT) =0 (B.74)

% tr(XX*) = Xt (B.75)

% tr(XX) =X (B.76)

X tr(X*) =0 (B.77)

%tr((XH)k) =k (X7)* (B.78)

6)8(* tr(XAXB) =0 (B.79)

af(* tr(X”? AXB) = AXB (B.80)

% tr(X?AXPB) = AX”B + BX?A (B.81)

o (X =0 (B.82)

% tr(AX 'B) =0 (B.83)

X" tr(eX) =0 (B.84)

X tr(eAXB) =0 (B.85)

% det(X) = 0 (B.86)

% det(AXB) =0 (B.87)

0



Appendix C

Norms

C.1 Frobenius norm

Let M be the inner product space of complex matrixes. Given two matAces
andB with A, B € M, we define the scalar product of two matrices as

(A,B) £tr {AB"} (C.1)

=3 amnb, - (C.2)

The induced norm is equivalent to tRebenius normi.e.

IAllF £ V(A A)

= 33 lamal?. (C.3)
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C.2 Inner product space of polynomial matrices

Let P be the inner product space of complex polynomial matrixes Afet) =
>, Az~ andB(z) be two matrix polynomials or Laurent series.

Finite energy If A(z) or B(z) havefinite energye.g.,>, ||A[|3 < oo or
> IIBe]l3: < oo, we define the followingnner product

<A(Z)7B(Z)>}- = Z (At,Bt) (C.4)
~ 3w {aBf)
=> > [AB]],.
- Z Z Z Wmn,t Uit (C.5)

=tr{Po,0 (A(z) B¥(2))} . (C.6)

Finite power If A(z) andB(z) havefinite powere.g.,
W7 o0 5757 S L IAL|% < oo, we define the inner product as

T

(A(),B()) 5 2 lim T @B (€.7)

T
= Jim TIH Y Y i bins (C8)

t=—T m n

= Jlim TIH tr {Po,0 (A(z) B (2))} (C.9)
for thedeterministic casand as
(A(2),B(2)); = E{(As,Bs)} (C.10)

=33 E{tmntbns) (C.11)

for thestochastic case
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Properties of inner products  An inner product., .} has to fulfill the follow-
ing properties [68]:

(2),C(2)) 7 = (A(2),C(2)) r + (B(2),C(2))  (C.12)
(aA(2),B(2)) r = a (A(2),B(2)) £ (C.13)
(A(2),aB(2)) r = a" (A(2),B(2)) » (C.14)

(A(2),B(2)) 5 = (B(2),A(2)) x (C.15)
(A(2),A(2))F =0 (C.16)
(A(2),A(2)) =0 <<= A(z)=0. (C.17)

The proofs that., .) .- fulfills these properties are easily obtained by using the
definitions in (C.5), (C.8), and (C.11).

C.3 Norm space of polynomial matrices

The inner product., .) » defines an induced norm dhgiven by

IAG2)]|r = \/(A(2), A(2)) 5 (C.18)
and ametricon P induced by the norm

d(A(2),B(2)) £ |A(2) = B(2)|- - (C.19)

Finite energy If A(z) hasfinite energy the induced norm (C.18) becomes
with (C.4)

1A, = \/Z 1A = \/Z 5 . (C.20)

Finite power If A(z) hasfinite power the induced norm (C.18) becomes
with (C.7)

T
. 1
1A (=)l = Jim_ \} s 1 O ladi (C.21)
t

=-T
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for the deterministic case and with (C.10)

IAG)F =/ E{ A7} (C.22)

for the stochastic case.

Properties of norms A norm||.|| has the following properties [54, 68]:

A=)z =0 (C.23)
[A()[|=0 <= A(z)=0 (C.24)
laA(2)]lz = lal [[A(2)]] 2 (C.25)
1A(2) + B(2)ll < |A(2)]|+ + IB(2)ll 2 (C.26)

where (C.26) is thériangle inequalitywhere the equality sign holdsB(z) =
0 or A(z) = ¢B(z). Furthermore, an inner product and the corresponding
norm satisfy the&Schwarz inequality

[ (A(2), B(2)) | < |AG)| £ IB(2)]| (C.27)

with equality iff {A(z), B(z)} is a linearly dependent set. Comparing (C.20)
with (C.3), we see thatA(z)|| - with A(z) € PP is a natural extension of the
Frobenius normiA || for A € M. We therefore refer tf).|| - as theFrobenius
norm for polynomial matrices

Appendix D

Projection operators

D.1 Generalized remainder< . >,

In this section we define thgeneralized remaindet . >, ; and thesymmetric
remainder< . >¢. We will write < ¢ >¢ ¢_; to denote the standard remain-
der whent is divided by the non-zero integéf. The range ok t > ¢_1 iS
{0,---,C — 1}. We introduce the following definitions:

<t>yc12t—[t/C]-C=t mod C (D.1)
<t >a7b = a+<t—a >O7b7a+1 (D2)
=a+(t—a modb—a+1) (D.3)
<t>Cé<t>—LC/2J7L0/2J (D.4)

With < ¢t >; , we denote the generalized remainder whéndivided byb —

a + 1 wherea, b are integers antl > a. For integer values of, the domain

of the remaindek . >, ; is {a,--- ,b}. Finally, with < ¢ >¢ we denote the
symmetric remainder{ odd) whent is divided byC. The domain ok ¢ >¢
is{—1C/2],---,|C/2]}. Fig. D.1 illustrates examples of the generalized re-
mainder with different parameter sets. All of them have 7 elements in their
domain.

215
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Generalized and symmetric generalized remainders have the following prop-

erties:
<t>c =—-—<—-t>¢c (D.5)
<t+kC >¢ =<t>¢ (D.6)
<t+kC >0,0—1 =<1t >0,0-1 (D.?)
<t+Ek(b—a+1)>.=<t>up (D.8)

Eq.(D.5) meansthat t > is an odd function, i.e., symmetric w.r.t. the origin.

D.2 Polynomial projection operators

D.2.1 Polynomial projection operatorP

Letz(z) = Y. _x;2~* be the double-sideg-transform (Laurent series) of
the sequence. We define thgoolynomial projection operatdP as follows:

c-1
Po,c—1 (x(2)) = Z sz t=wg+ - +xo_127 ¢! (D.9)
t=0
b —t —a —b
o Ttz = ez a2 a<b
Pay (2(2)) 2 {g:ta ¢ a b s
(D.10)

Pap (x(2)) with b > a returns the sub-polynomial af( =) which contains the
terms with the powers from~? to z~°. Furthermore, we define tlsymmetric
polynomial projection operator

[C/2]
Po (x(2)) £ P_jcpap ez @(2) = > w2t (D.11)
t==1C/2]
:w7L0/2J2'+LC/2J +"'+;L‘LC/2JZ_LC/2J. (D.12)

with C' > 0 and odd. P¢ (z(z)) returns the sub-polynomial af(z) which
contains the terms with the powers fram!¢/2] to z=1¢/2],
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sb : Lo
@oﬁTTTTOQTTTTTOQ?TTTTOQTTT
st ‘ | | |
-10 -5 0 5 10
sb ) ‘ ‘ ‘ ]
(b)oﬁTT(L(bc,@‘f(fT(L(bc,<P?TT&(bc,w‘fTT1
_5, : ‘ : ‘ ‘
-10 -5 0 5 10
5+ ]
(QdTi$¢°Q?Ti$¢°Q?Ti$¢°Q?TL1
5L ,
~10 - 0 5 10
index t
Figure D.1: Generalized remainder function:
(a)<t>076: tr—>{0,---,6},
(b) <t>_94: t’—){—2,---,4},
() <t>_33=<t>r: tr—{-3,---,3}
Properties of P
Basic propertiesq{ = complex value)
Pii (2(2)) =227 (D.13)
b
Py (@(2)) =D Pes(2(2)) (D.14)
Pop (@x(2)) = Py (2(2)) (D.15)
ap (@z(2)) = a” Py, (x(2)) (D.16)
Pap (€(2) +y(2)) = Pap (€(2)) + Pap (y(2)) (D.17)
Pas (32, 76(2)) = 3, Pas (@4(2)) (D.18)
Pae (2(2)) = Pap (@(2)) + Pog1,c (x(2)) (a<b<c) (D.19)
Pap (Pap (€(2))) = Pap (2(2)) (D.20)
Pap (Pe,a (€(2))) = Pe,a (Pap (2(2))) (D.21)
= Pmax(a,c),min(b,d) (:L'(Z)) : (D22)
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Properties of time reversal, transposition, and complex conjugation We have some more involved properties< b , ¢ < d)
Piy (@(2)) = Py a (a"(2)) (D-23) S P P ) =Y, wey; (D.42)
Pap (1%(2)) = Pap (.(271)) = Py, (2(2)) (D.24) =Po.0 (Pap (z ( Ny (2)) (D.43)
Pap (2(z71) =Py _, (24(2)) (D.25) =Po,o (z(2) P, (y(2))) (D.44)
Pap (2:(2)) = P2y _o (2(271) (D.26) =Po,0 (Pay (z ( )) Pas (y(2))) (D.45)
Pc (z%(2)) = P¢ (z(2)) (D.27) Zb Pyt (z(2)) Pt*—d,t—d (y(z)) = Zb ,—d Tyl (D.46)
Pe (z(27h) = P& (24(2)) (D.28) t=a _p tz;) . D47
Py (X7(2)) = PT, (X(2)) (D.29) = Pa,a (Pa,p (x(2)) y*(2)) (D.47)
Pa,b ' - Pmb e it o =Paa (x(2) Py_a4p_qaW(2)) (D.48)
“”}5 (2)) = Pap (X (zH ) =PL o (X(2)) (D.30) — Pat (Pas (0(2)) Py (0(2))
P (X(2)) =Py, 0 (X (2)) - (D-31) (D.49)
b — *
Properties of time shifting Z o Prvaita(@(2) Pry (y(z) = Zt:a e aray; (B-50)
= Pa,a (Pa+aptda (#(2))y*(2)) (D.51)
,Pt7t (ZL”(Z)) = Zﬁt ,P070 (ZtiL"(Z)) (D32) = Pd7d (ZL”(Z) P();b (y(Z))) (D52)
Pas (2(2)) = 279 Po p—q (2°3(2)) (D.33) = Paa (Parap+a (@(2)) Py y (y(2))) -
Pap (#(2)) = 2 Patapra (277 2(2)) (D.34) (D.53)
2 Pap (#(2)) = Parapra (27 2(2)) (D.35) The more general case ¢ d)
Pasp (29 2(2)) = 2/ Patapra (€(2)) (D.36) ,
2 Puy (21 2(2)) = Parasra (2(2)) (D.37) Yo Pre(@(2) Piigu—e (9(2)) = Pea (Pap (2(2) y*(2))  (D.54)
Prt (y(2)) Pap (#(2)) = Pattptt (P (y(2)) x(2)) (D.38) b . .
; ; Priec P =P, P . D.55
Pl (0(2) Pap (2(2)) = Pacipt (P, (0(2)) 2(2)) - (D.39) D i Preasd (0(2) Piy (4(2) = Pea (a(2) Pl (4(=)) - (D.55)
Proof of (D.54): We start with the left side of (D.54) and apply (D.23), (D.38),
Properties of the inverse:(z) has at least two terms) (D.18), and (D.14)
Pap (€(2)) Py (z71(2)) #1 (D.40) Z Pri (@(2) Plgi—c (y(2)) = Z::a Prt (@(2)) P—te,—t+a (¥ (2))
.Z'(Z) Pa,b (I_l(z)) 7& 1. (D41) — Ziia Pc7d (Pt,t (ZL”(Z)) y*(z))
Most of these properties can easily be proved by applying (D.14) and (D.13). =Pe,d <Zt Prt ( y (= )>

The task is then simplified to prove the properties witk b. .
= Pea (Pasp (x(2)) y"(2)) - O
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Alternative representation of z(z)

Alternatively, we can writes(z) = >_,° a2z~ " as

oo  kC+C-1

o> wmet (D.56)

k=—o0 t=kC

oo C-1
= Z Z Teppe 2 RC (D.57)
k=—o0 t=0
00 -1 00
= Z P Z Toipo 2l = Z 27k r(2) (D.58)
k=—0o0 = k=—00
c-1
= Z z- Z Topre 2 Y = Z z7? xip) (zc) . (D.59)
k=—o00 t=0

Eq. (D.59) is called theolyphase representation af(z) [38] with azg”) (z) &

> e Te+ke 2%, whereas (D.58) representé:) partitioned into consecu-
tive non-overlapping blocks of lengtti. Using the definition in (D.10), we can
reformulate (D.56) and (D.58), and obtain the following identities

2(z) = D Prorcro-r (#(2)) (D.60)
k=—o00
:ZZI”PC1 Zz zr(2) (D.61)
k=—o00 k=—o0
L (Z) = ch PkC,kC—i—C—l (.%‘(Z)) = 73070_1 (ch x(z)) . (D.62)

By doing similar calculations we obtain the general identi{@s=b — a + 1)

z(z) = Z Patrcpric ((2)) (D.63)
k=—o0
= Z 2 HCPL (2 Z 27 h 2 (2) (D.64)
k=—o0 k=—o0

2k (2) = 2 Payroprre (@(2) = Pap (27 2(2)) (D.65)
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and by using the symmetric polynomial projection operator

Z 27 k¢ Py (ch x(z)) = Z 27k my(2) (D.66)
k=—o00 k=—00
21(2) = Pe (ZlcC 2(2)) . (D.67)

D.2.2 Circular polynomial projection operator P

Letz(z) = >0 x:z . We define thesircular polynomial projection op-
erator P as

Po,c—1 ( Z xp 2~ <t>o0-1 (D.68)
t=—o0

Posp (2(2)) = Z Ty 2T St (D.69)
t=—00

Po(z(2) = Y w2 <t>¢ (D.70)
t=—o0

where< t >, ;, denotes the generalized remainder defined in (DR2).(.) is
the symmetric circular polynomial projection operato8imilar toP¢ (.), we
requireC to be odd and’ > 1 for P¢ (.).

Alternatively, we can write (D.68) as
Po.c—1 (x(2)) = z(z) mod 27¢ -1 (D.71)

wherez(z) mod z~¢ — 1 denotes the remainder of the divisionzffz) b
2~¢ — 1 over the field of polynomials [13].
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We have the following useful relatiofl§'=b — a + 1)

Poo1(@(z) 2 Y Pooa (2*a(2))

k=—o00

= Z 2 Prororo—1 (x(2))

k=—00
oo C-1

Cc-1 o0
-t _ —t
DD DL LD DERD D
t=0

k=—o00 t=0 k=—o0

C+1

To+ - +To-12"
75a7b (:U(Z)) é Z Pa,b (ch CU(Z))

k=—o00
[

> 2 Pasroprre (€(2))

k=—00

oo b
—t
E E Ti+kC 2

k=—oc0 t=a

b

Tz 4+ Tpz

Po(z(2) & > Po (2" w(2))

k=—o0
oo

Z 2R p_ \¢/2)+kC, | C/2)+ke (2(2))

k=—o00

oo LC/2]

—t
=2 2wz

k=—00 t=—[C/2]

= 53_[0/2JZ+[C/2J + -+ iLC/%Zf[C/ZJ S Z(z).

(D.72)

(D.73)

(D.74)

(D.75)

(D.76)

(D.77)

(D.78)

(D.79)

(D.80)

(D.81)

(D.82)

(D.83)
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Properties of P
Basic propertiesq{ = complex value)
Poo () = 3 (0.8
k=—o0
Pri (2(2)) = 27t Poo (2(2)) (D.85)
Pusp (ax(2)) = aPuy (z(2)) (D.86)
Piy(@a(z) = o P, (x(2)) (D.87)
Pap (@(2) +y(2)) = Pap (2(2)) + Pap (4(2)) (D.88)
Pas (32, 26(2) = 2, Pas (@n(2)) (D-89)
Pap (Pup (2(2))) = Py (2(2)) (D.90)

Pry (w(2) = Py (27(2))

P (#7(2)) = Py (we(z7H) = P74 _, (2(2))
Pap (2(z71)) = P2y _, (24(2))

P (1:(2) = P, (2(z71))

Po (a7 (2)) = P (w(2))

Po (x(z71)) = P (z.(2))
Pap (X" (2)) = Py (X(2))
Pap (X7 (2)) = Pay (XI(z71) = PH, _, (X(2))

Pap (@(2)) = 27 Pop_a (2"x(2))
Pap (2(2)) = 2% Payapra (27 2(2))
27 Puy (2(2)) = Pasapra (274 2(2))
Pap (24 2(2)) = 2 Payapra ((2))
27 Py (27 0(2)) = Payapra ((2))

(D.91)
(D.92)
(D.93)
(D.94)
(D.95)
(D.96)
(D.97)
(D.98)
(D.99)

(D.100)
(D.101)
(D.102)
(D.103)
(D.104)
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FurthermoreP also has the following properti¢s € Z)

750 o1 (z(2)) = 750 o1 (2% 2(2)) (D.105)
o (2(2)) = ( k(b—a-+1) x(z)) (D.106)
P (2(2)) = Pe (€ x(2)) (D.107)
Prokcro1 (2(2)) = 27% Poo 1 (x(2)) (D.108)
Pactkib—at1)bir(o—at1) (2()) = 207D Py (o(2) . (D.109)
Properties of products
Pas (2(2) () = P (2() Pas (4(2)) (D.110)
= Payp (ﬁa,b (#(2)) Pas (y(z))) . (D.111)
Properties of the inverse (use (D.110) and (D.111) with) = =1 (2))
P (Pas (@) Puy (271(2))) =1 (D.112)
Pe (Pe (2() Pe (¢71(2) ) =1 (D.113)
Pap (#7(2)) = Pap ((ﬁa,b (x(z)))1> (D.114)
Po (z71(2)) = Po <(75<,~ (w(z)))1> . (D.115)
Combined properties ¢ andP
Pas (P (2(2))) = Pup (#(2)) (D.116)
Pa,p (Pap (#(2))) = Pap (x(2)) (D.117)
butin generaP, s (Pa,s (2(2))) # Pus (P (2(2)).
Examples
Tx
P_p1, (#(2)) = Poria (2(2)) = t;ﬂ zp 2t (D.118)
P_n.1, (2(2)) = Porga (2 Z Z Teerenen 2t (D.119)

t=—Tx k=—o00
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Polynomial matrices or matrix polynomial

The projection operatorB andP applied on polynomial matrices or a matrix
polynomial is straightforward, i.62, ; (A(z)) = Zzza A,z

Sequences

The projection operatorB and P applied on sequences are defined similarly
as for polynomials, i.e.

Pop {- s xay--yxp,...}) ={...,0,2q,...,2,0,...}.



Appendix E

Update equations

In this Appendix we summarize the update equations of the algorithms for sys-
tem identification, inverse modeling, and blind identification. The derivation
of the non-blind algorithms is given in Chapter 2,4, and 5, those of the blind
algorithms in Chapter 6.

227
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Algorithm | Update equations

cost function A A1 RLSLHx | & — T—2X
) He= A+(1=X) s{{f{S}Llst
JmsEx H,; — W, =H, 3 Hé 1
Ht+1 = Ht + [t €xt St R;Stfl
RLS1-Hx — RLS1-Wx . . . .
1 _ 1 -1 1 Hp -1
Rsst - (Rsst_l - :U’tRsst_lstSt Rsst_l)
LMS1-Hx —  LMS1la-Wx, LMS1b-Wx T—X\
RLSZHS | o= S AT 5
LMS2-Hx —s  LMS2a-Wx, LMS2b-Wx A X Pl X

L Ht+1 = Ht + l,l,t eXtXtHR;)it_lHt
JMSE-s H; =W, — W, 1-A

fu = Hpa—1
RLS2-Hs — RLS2-Ws A+ (1= XN xRy %
R =L (R:!  — R xxHRZ!
LMS3a-Hs, LMS3b-Hs «+— LMS3-Ws xxt — X ( xxg g — H o Xt ’“‘t—l)
- _ H
LMS4a-Hs, LMS4b-Hs «— LMS4-Ws LMS1-HX | Heyy = Hy + pegs;

LMS2-Hx Ht+1 = (]. — ,u) H; + MXtStH

Table E.1: Relationships between update equations. We can choose befyygenr or Jyuse-s
_ H
for the desired cost functions and can either upd®teor W;. LMS3a-Hs | H;y1 = H; + % extx; Hy

LMS4a-Hs

LMS3b-Hs | Hyy1 = Hy + prexx [T — pexx?] ' H,

non-blind algorithm blind algorithm LMS4b-Hs
RLS1-Wx — BRLS1a, BRLS1b, BRLS1c Table E.3: Updaﬁe equa}ions fosystem identification of an instantaneous mixing system.
RLS2-Ws ~ — BRLS2 e T
LMS1a-Wx — BLMSla
LMS1b-Wx — BLMS1b
LMS2a-Wx — BLMS2a
LMS2b-Wx — BLMS2b

Table E.2: Relationships between non-blind and blind update equations.
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RLS1-Hx | 1A =T
- = _ _ . =-1 _
CTNF (1= V) sies s RLS1-Hx | fi, = (1— ) [)\I +(1-2) skHRssk_lsk}
ht+1 = ht + fiz exts:;fs_si_l _ _ =
P N o e wa1 Hyit1 = Hy +”’“EXkSkHRSSk—1
rsst Y rsst,1 :utrsst,1 StS¢ rsst,1 N 1 1 N
1— R —1(R —_ R S, SHR
RLS2-Hs e = AA,1 — RSSk - A (Rsskl p’kRsskflskSk Rssk1>
A (L= X)) @i ez, & - — 1 - 11
ht+1 = h/t + Mt €Xt.’L'?;’IQ;z1t_1ht RLS2-Hs ﬂk = (1 - >‘) Al + (1 - A) Xglexk_lxk
1-A ) =—1 _ }
iy = = S - R OXH
He A+ (1=2) x;f;xlt—ﬁft Hipy = Hy + ukEXka Rxxk—lHk
1l — L (p-1 — Pl il ) _ _ o =—1 _11
ey = X \"wwy g T PtTaay  TiTiTaay B = (1= AT+ (1= N X Ry, Xy
LMS1-HX | hip1 = he + pexgs; -1 | [=-1 _ ozl o ==l
N Rxxk = (Rxxkl - I“l’kaxkilkak Rxxk1>
LMS2-Hx ht+1 = (]. — ,LL) he + KT Sy
LMS3a-Hs | hut1 = he + = expi e LMS1-Hx | Hyyy = Hy + pEx, S
LMS4a-Hs LMS2-Hx | Hyyy = (1 — p) Hy, + pX,SH
LMS3b-Hs | hip1 = he + ey} [1 — pegzi] by LMS3a-Hs | H Hy, + p[I - uXHE ]_1 E, XFH
a-Hs = - 5
LMS4b-Hs k+1 kT H X X Aag i

LMS4a-Hs

Table E.4: Update equations fagain identification. (ex; = x¢ — &)

— — — — — — _1 —
LMS3b-Hs | Hjy1 = Hy + pBy X [1- By XF) 7 Hy,

LMS4b-Hs

Table E.5: Update equations faingle-channel system identificationBy extending the diag-
onal matrices to block diagonal matrices, &3y, — Hy,, etc., we obtain the update
equations for MIMO system identificatioBEx, = X, — X;,)
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Algorithm | Update equations

— _H="1 _ -1
RLS1-Hx | fi;, = (1 —X) [)\I +(1-MN)S, Rssk_lsk}

— — — — —H="!

Hk+1 = Hk + l’l/kEXkSk Rssk—l

—-1 (w51 =1 _ _pg=-1

Rssk = (Rsskl - p’kRsskilskSk Rssk1>

- — — =T

RLS2-Hs | 7, = (1-A) AL+ (1 - N Xy Ry, Xi

__ __ -_ _ _HTfl _ h

Hk+1 = Hk + l’l/kEka‘k Rxxk—lHk

— [ —g=-1 ] -1

Lr=(1=X) AT+ (1-X2X, Rxxk_lxk

-1 (w1 =1 _ _p=-1

Rxxk = (Rxxkl - I“l’kaxkilkak: Rxxk71
LMS1-Hx | Hys1 = Hy, + uEx, Sy,
LMS2-Hx | Hppy = (1 — p) Hy + pXi Sy

— — —H— 11 _ __—_g__
LMS3a-Hs | Hyo = Hy + 4 [I X Exk] E, X, H;
LMS4a-Hs

— — = —=H = —H] 1=
LMS3b-Hs | Hyy1 = Hj, + uEx, X, [I — uBx, X, ] H,
LMS4b-Hs

Algorithm Update equations
11—
RLS1-WX | u; = A -
A+ (1= N sfRes;_
Wi = Wi+ EStS{{R;sLth
o 1— A
M= +(1-NsfRa s
R; =X (R;S;l B ﬂtR;SiflstSfR;S}:fl)
11—
RLS2-Ws | ji; = A -
A+ (1= 2) x{ Racx,_ Xt
Wi = Wi+ i estxff{;it,l
R, =+ (Rl — iR, xRy, )
LMS1a-Wx Wt+1 =W; + ﬁ EStS{{Wt
LMS1b-Wx | Wiy = W, + pegs [T — pegst ] W,
LMS2a-Wx | Wiy = (I - mutsf) W,
LMS2b-Wx | Wiy = [(1 — )T + pusH] ™' W,
LMS3-Ws Wt+1 =W; + ueStxfI
LMS4-Ws | Wy = Wi+ p (W7 — uxf)

Table E.6: Update equations fanultichannel system identification By substituting the block
diagonal matrices to diagonal matrices, &y, — Hp, etc., we obtain the update

equations for SISO system identificatioiEx, = X, — Xj)

St — ug)

Table E.7: Update equations fanverse modelingof an instantaneous mixing systefies; £
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Algorithm | Update equations Algorithm | Update equations
T—X = =
RLS1-Wx - _ — 1
He =~ + (1= N\ siass_u RLS1-Wx | i, = (1= X) |AI+(1-X) S{»{RssklUk]
— + *a—1 _ _ B = =gzx-—1 _
Wet1 = Wy Mlt ist;t Tsspq Wt Wit = Wy + NkEskSkHRsskﬂWk )
0, — _ r _ = —1 _ -
M N A= N siraa_ s i = (1—\) [AI+(1—)) sngssk_lsk]
a1l _ 1 (a1 ooaed *a—1 L
RLS2-Ws | ji; = 1A k k—1 k—1 k—1
/\+(1—)\)xt*r”1t71zt _ - —H7_1 _ —TI
Wiyt = Wi + it €Ty Ty, RLS2-Ws | fiy = (1= A) AT+ (1= A) Xy Rxxk1Xk]
~ P oAl A - - - = =gza—1
rwwlt = % (rwwlt_l - utrxxlt_lwtwt r.t.tlt_l) Wk)-‘rl = Wk) + MkESkXERXXk,1
=~ —1 =~ —1 - = —1 —_ =~ —1
LMS1a-Wx | wi1 = we + 7=/ est5twe R =3 <Rxxk1 - p’kaxklkaERxxk1>
LMS1b-WxX | w1 = wy + pressy [ — pesst] ™ w _ _ o 1= . _
t+1 t T M EstSy [ M Est t] t LMS1a-Wx Wk+1 =W, + I [I _ :“S{»{Esk] 1 EskS{?Wk
LMS2a-Wx Wiyl = ﬁ (]. — mutsf) Wy R — .1
= LMS1b-Wx | Wyy = Wy, + s, S [1 - uBs, 8] W,
LMS2b-Wx W41 = [(1 — /l) + /I,UtS?;] we I
- A - _1 _ _ SHU.] "U.SHW
IMS3Ws | wner = wo & poms; LMS2a-Wx | Wi, = 11 (I (1= I+ pSHT,] " TSt ) Wi
LMS4-Ws | wiyy = wy + p (wj™ — wea}) LMS2b-Wx | Wip1 = [(1 - )T+ pUS{] Wy

LMS3-Ws | Wy = Wy + pEs X[

Table E.8: Update equations fanverse-gain identification (es; L5 - ut)

LMS4-Ws | Wy = Wi +p (W, 7 — T, XH)

Table E.9: Update equations fasingle-channel inverse modellingBy extending the diagonal
matrices to block diagonal matrices, e, — W, etc., we obtain the update
equations for MIMO inverse modellingEs, £S5, — Uy)
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Algorithm Update equations
r _ -1

RLSI-WX | T, = (1—A) |[AI+(1=)) §fRssklﬁk]

_ =1

Wi = Wk + ll'kEsk Sk Res, (Wi

_ —_g="1 _ -1

L, =(1-2X) )\I+(1—)\)S,C RS 1Sk]

-1 e -1 _ =1 H=—1

Rssk =2 <Rssk1 - I“l’kRsskilskSk Rssk1>

_ [ —H="1 _ 17t
RLS2-Ws | fi, = (1—A) |[AI+(1—)) XkHRXXklxk]

— — - — —H="!

Wk+1 = Wk + I“l’k)ESk Xk} Rxxk 1

—1 ——1 — -1

_ 1

Rxxk - X <Rxxk1 - Rxxk 1Xka Rxxk 1)

— — _H— 11
LMS1a-Wx | Wiy =Wy + 4t [T - 1S, By | B S, W,

_ _ _ _ —1I
LMS1b-Wx | Wiy = Wy + uEs, S, [1 — uEs, S, ] W,
LMS2a-Wx | Wiy = L (1 —u [(1 — I+ ,Bfﬁk} B ﬁ,s,f) W

— =2 e R
LMS2b-Wx | W1 = [(1 — I+ uUksﬂ W,
LMS3-Ws | Wiy = Wy + B, X,

— J— ——H - H
LMS4-Ws | Wii1 = Wy + p (Wk _UX, )

Table E.10: Update equations fanultichannel inverse modelling By substituting the block
diagonal matrices to diagonal matrices, éW.,, — Wk etc., we obtain the
update equations for SISO system |dent|f|cat|(Esk =S, — Uk)

Algorithm | Update equations
BRLS1la | u = 1-A
A+ (L=NufRe, | w
Wip1 = Wy + ppepgug Rssi,lwt
BRLS1b | p = -4
A+ (1= N ulRdw,
Wip1 = Wi+ pe (I— yuf?) R'W,
T—X
BRLSIe | me = S =yl
Wi =W+ (I - Ytllfl) W,
BRLS2 | ji = -4
A+ (1= A xRix,_ %t
Wit = Wy + iz ey X int L
R;xt — (R;Xt 1 '“tRxxt 1XtXHR;xt 1)
BLMS1a | Wip1 = Wi + - enuf' W,
BLMS1b | Wiy = W, + pepul! [T — pepuf!] ' W,
BLMS2a | Wiy = 1L (I _ mytug”) W,
BLMS2b | Wiyy = [(1— @)L+ pyuf’] ' W,
BLMS3 | W1 = W, + pepxt?
BLMS4 | Wy = W, +p (W, 7 —yixt)

Table E.11: Update equations fdilind source separation (ep; e e yt)
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Algorithm | Update equations

B T—X
A (L= N uffss,  ue

BRLS1a | u

— *n—1
Wiyl = Wt + [t €Uy r”tilwt

BRLS1b | u = 1-A —
A+ (1= X)) ufgs ug
w1 = wy + e (1 — yeuf) 73wy
BRLSIc | 1A

- A+ (1= X)) ufuy

w1 = wy + pe (1 — ypuy) wy

BRLS2 | iz = " AA_l
Nt (L= Nz

A

— hd * 1
W1 = Wi + fit €Ty Ty,

P N e | *a—1
Tezy = X (Txxt_l - :u‘trxxt_lxtxt’rzzt_l)

— © *
BLMS1la Wiyl = Wi + T nul eny €ph Uy Wi

BLMS1b | w1 = wy + pepuf [1 — uebtuf]fl Wy

BLMS2a Wiyl = ﬁ (]. — mytu;) Wy

BLMS2b | wip1 = [1 — p + pyeus] " wy

BLMS3 W1 = Wi + pep Ty

BLMS4 Wiyl = We + @ (w;* — yth‘)

Table E.12: Update equations fokGC. (ep; = us — yt)

Algorithm | Update equations
BRLSla | fi, = (1—\) {)\I +(1-)) ﬁff{;;lﬁk} -
Wit = Wi + B, UM R, W,
BRLS1b | i, = (1— ) {)\I F(1-N) I_Jfflsslfjk} -
Wist = Wi + i, (I- ¥, 01) R Wy
BRLS1C | fi, = (1—-A)[AI+(1-)NTHLT,] "
Wit = Wi + i, (I ¥, 07) Wy
BRLS2 | fi, = (1— ) {)\I (- ng{xik_lxk} E
Wi = Wi + ﬁkEkakHﬁ';:k_l
R, =4 (Rny, ~ IuRn, KiX[ R, )
BLMSla | Wiy = Wy + o [I - pOf By, | " Ep UFW,
BLMS1b | Wiy = Wy + puEp, UF [I - uEb, UF] W,
BLMS2a | Wiy = - (1 —u (1= I+ pOHG,] ™ Ykﬁ{?) W,
BLMS2b | Wiy = [(1 — )T + uY, OH] 7' W,
BLMS3 | Wiy = Wy + i, X1
BLMS4 | Wiy = Wi+ (W7 — Y. XH)

Table E.13: Update equations fasingle-channel blind deconvolution (Ebk 20, -Yw
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Algorithm | Update equations
——gH=—-1 __ -1
BRLSla | i, = (1—\) {)\I +(1—N) UkHRssklUk}
__ H=-1 __
Wit = Wi + B, Uy Ry, W
BRLS1b |7, = (1—)) {)\I +(1-NTL R, U,&
I __ ——1___
Wi = Wy + T, (I—YkUk ) R, W,
g 1
BRLSIc | i, = (1—\) [/\I +(1-N) Uka]
I — _ — —H\ —
Wit = W + 7, (I _Y, U, ) W
_ —Hg=—1 177
BRLS2 | fi, =(1—)\) {)\I +(1-N) Xfoxklxk}
_ P
W’C+1 Wk + l’l’k}Eka—L Rxxk 1
—1 (w51 —1 T e
Rxxk =X (Rxxk 1 ukaxk 1Xka: Rxxk_1>
- __ — H— —1
BLMSla | Wy = Wy + [I — U} Ebk] E,, U, Wy
_ _ _ _ —1
BLMS1b | Wyt = W, + uEp, U [1 — o, U} } W,
BLMS2a | Wiy = 1L (1 —u[1 - w1+ 0T YT ) W,
__ _ -1 _
BLMS2b | Wy s = [(1 Y +quUkH] W,
BLMS3 | Wiyi = Wy + uEp Xy
BLMS4 | Wis1 = Wi + 4 (W;H - ?,Xf)

Table E.14: Update equations fanultichannel blind deconvolution. (Ey, = U — Yy)

Appendix F

Implementation of a
single-channel blind
deconvolution algorithm

A frequency-domain blind deconvolution algorithm was presented recently by
Douglas and Kung in [35]. In this Appendix we present an alternative imple-
mentation in MaTLAB of a single-channel frequency-domain blind deconvolu-
tion algorithm as described in Section 6.8.2. Several update equations can be
chosen irFDBDeconv.m, such as the natural gradient algorithm, the EASI al-
gorithm, or the Infomax algorithm. The algorithm can handle complex-valued
signals and coefficients. Depending on the choice of the nonlineg(iythe

source signal can be either sub-Gaussian or super-Gaussian. As an example,
the non-causal filter and update equations of the natural gradient learning algo-
rithm in the time domain at block are [5, 6]:

Ny
Ut = anwa Wn,k Tt—n (Fl)
Ny
Ve = anwa win,k Ut—n (FZ)
Iz L
Wy k+1 = Wn,k + 2Ty 1 Zt:—Ty Wn,k — g(ut) U:—n' (FS)
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The constraints of the algorithm to avoid boundary or circular wrap-around
effects of the convolutions af&, > T, + Ny, Ty > Ty + Nw, Tx > Ty + Nw,
andC > 2Ty + 1. The algorithm can be made causal by delaying the filtering
and update.

F.1 FDBDeconv.m

%FDBDeconv  Frequency-domain blind deconvolution.
%

%  Marcel Joho, 24.11.2000, (joho@isi.ee.ethz.ch)
%

clear

%%% parameters %%%%%%%%%%%%%%%%%%%%% %% %% % %% %% % %% %% % %% %% % %% %% % %% % %% %% %

C=512; Nw=50; Tx=250; iter=500; plot_isi=20;

Tu=Tx-Nw; Ty=Tx-3*Nw; L=2*Tu+l; L2=2*Ty+1;

%%% initial conditions %%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% % %% % %% % %% %% % %% %
len_s=iter*L+L;

x=zeros(C,1); u=x; y=u; u_out=zeros(L*iter,1);

Unit=fft([1;zeros(C-1,1)],C); W=Unit;

%%% a(z) %%%%%%%%%%%%%%%%% %% %%%%%%%%% % %% %% % %% %% % % %% %% % % %% %% % % % %% %% % %%

a=[ -1-4i 1-5i -11-2i -17-11i -1+20i)/10; % a(z)
Na=length(a); a=a(:)/sqrt(sum(a.*conj(a)));
a=[a;zeros(C-Na,1)]; A=fft(a,C);

%%% projection matrices %%%%%%%%%%%%%%%% %% %%%%% %% % %% %%% %% %% %% %% %% %% %%
Ng=Na+Nw-1;

99=[(C-Ng+1:C) (L:Ng+1)J;

ww=[(C-Nw+1:C) (1:Nw+1)]; Pw=zeros(C,1); Pw(ww)=1;

Xx=[(C-Tx+1:C) (L:Tx+1)];

uu=[(C-Tu+1:C) (1:Tu+1)]’; Pu=zeros(C,1); Pu(uu)=1;

yy=[(C-Ty+1:C) (L:Ty+1)]; Py=zeros(C,1); Py(yy)=1;

%%% optimal deconvolution filter w(z) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
W_opt=1./A; w_opt=ifft((W_opt);

figure(1); plot((-Nw:Nw),[real(w_opt(ww)) imag(w_opt(ww))]);

ylabel(w_{opt}(z)’); xlabel('tap n’); drawnow ; pause(l);

%%% source signal %%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %% % %% %% % %% %% % %% %% %% %
%s=randn(len_s,2);s=sign(s).*s."2;s_seq=s*[1;il/sqrt(6); % super-G
s_seqg=(sign(randn(len_s,1))+i*sign(randn(len_s,1)))/sqrt(2);% sub-G

n_seq=0.032%(randn(len_s,1) + i*randn(len_s,1)) / sqrt(2);
x_seq=filter(a(1:Na),[1],s_seq) + n_seq;
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%%% algorithm %%9%6%%%%% %% % %% % %% %% % %% % %% % %% %% % %% % %% % %% % %% %% % %% %% %%
for k = Lliter

%
%
%

%

%
%

%
%
%
%
%
%
%
%

t=k*L; k

X(xx)=x_seq(t-Tx:t+Tx); X=fft(x);
U=W.*X; u=Pu.*ifft(U); u_out((k-1)*L+1:k*L) = u(uu);

%%% nonlinearity y=g(u) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ur=real(u); ui=imag(u);

y=sign(ur) + i*sign(ui); % super-G (ref/im)
y=sign(u); % super-G (abs)
y=ur.*abs(ur).”2 + i*ui.*abs(ui).”2; % sub-G (re/im)
y=u.*abs(u)."2; % sub-G (abs)

eb=Pu.*(u-y); Eb=fft(eb);
y=Py.*y; Y=fft(y);

%%% update equations %%%%%%%%%%%%%%%%%%%% %% %% %% %%%%% % %% %% % %% %% % %%
% EASI

% blind error

W = W + 0.05/L2 * (L2*Unit-U.*conj(U)+U.*conj(Y)-Y.*conj(U)).*W;

W = W + 0.05 * (Unit - Y.*conj(U)/L2).*W; % nat.grad.|

W = W + 0.05 * (W - Y.*conj(U).*W/L2); % nat.grad.ll

W = W + 0.05/L2 * (L2*conj(W)."(-1) - Y.*conj(X)); = % Infomax

mu = 0.3/L; mu_2 = mu./(Unit-mu*conj(U).*Eb); % BLMS-1Wx

W = W + mu_2.*Eb.*conj(U).*W; % BLMS-1Wx
W = W + 0.3/L*Eb.*conj(U).*W; % BLMS-1Wx-c
mu = 0.05; mu_2 = mu./((1-mu)*Unit+mu/L*conj(U).*U); % BLMS-2Wx-a

W = 1/(1-mu) * (Unit - mu_2/L2.*Y.*conj(U)).*W; % BLMS-2Wx-a

mu = 0.05, W = 1./((1-mu)*Unit + mu/L*Y.*conj(U)).*W; % BLMS-2Wx-b

W = W + 0.05/L * Eb.*conj(X); % BLMS-3Ws

W = W + 0.05/L2 * (L2*conj(W)."(-1) - Y.*conj(X)); % BLMS-4Ws

%%% filter projection operation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
w=Pw.*ifft(W); W=fft(w);

%%% performance %%%%%%%%%%%%%%%%%6%%%%%%% %% %% %%%% %% % %% %% %% %% %% %%
G=W.*A; g=ifft(G);
Jisi(k)=sum(g.*conj(g))/max(g.*conj(g))-1;

%%% plots %% %%%% %% %% %% %% %% %% % %% %% %% %% %% %% %% %% %% %% %% %6 %% % %% %% %%
if rem(k,plot_isi)==0,
figure(1); plot(10*log10(Jisi));
ylabel('J_{ISI} [dB]’);xlabel(’k’)
figure(2); plot((-Nw:Nw),[real(w(ww)) imag(w(ww))]);
ylabel('w(z)");xlabel(tap n’)
figure(3); plot((-Ng:Ng),[real(g(gg)) imag(9(g9)))):;
ylabel('g(z)’);xlabel(tap n’)
figure(4); plot(real(u(uu)),imag(u(uu)),’.’);
drawnow
end

end
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block delay
W41
filter projection

g(.)

Yk

Flyk
F
]
Figure F.1: Block diagram of the frequency-domain realization using the nat-
ural gradient learning algorithm.
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F.2 Performance plots
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Figure F.2: Performance curve and constellation diagram of the natural gra-

dient learning algorithm with a QPSK source signal giid) =
ulul?.
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Figure F.3: Performance curve and constellation diagram of the natural gra-
dient learning algorithm with a QPSK source signal gitd,. +
juim) = ure|ure|2 + juim|uim|2-



List of Abbreviations

AGC Automatic gain control

BD Blind deconvolution

BIBO Bounded input — bounded output

BLMS Blind LMS

BRLS Blind RLS

BSS Blind source separation

CLT Central limit theorem

CMA Constant modulus algorithm

DFT Discrete Fourier transform

ETH Eidgerossische Technische Hochschule
(Swiss Federal Institute of Technology)

FDAF Frequency-domain adaptive filter

FDLMS Frequency-domain LMS

FFT Fast Fourier transform

FIR Finite impulse response

FLMS Fast LMS

HOS Higher-order statistics

ICA Independent component analysis

ICI Interchannel interference

IDFT Inverse discrete Fourier transform

iff if and only if

IFFT Inverse fast Fourier transform
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248 List of Abbreviations
iid independent identical distributed
IIR Infinite impulse response
ISI Intersymbol interference,
Signal and Information Processing Laboratory
LMS Least-mean square
MAP Maximuma posteriori
MCBD Multichannel blind deconvolution
MIL Matrix-inversion lemma (A.5)
MIMO Multiple input — multiple output
ML Maximum likelihood
MMSE Minimum mean-square error
MSE Mean-squared error
NLMS Normalized LMS
OLA Overlap add
OoLS Overlap save
PCA Principal component analysis
pdf probability density function
QAM Quadrature amplitude modulation
QPSK Quaternary phase shift keying
RLS Recursive least squares
SINR Signal-to-interference-and-noise ratio
SIR Signal-to-interference ratio
SISO Single input — single output
SNR Signal-to-noise ratio
SOS Second-order statistics
SVvD Singular value decomposition
WHE Wiener-Hopf equation
ZF Zero forcing

List of Symbols

Scalars

K
)‘7 )‘m

Wy o
w

Jisi
Jmcaisi
JMSE-s

JMSEx

Ms

Kurtosis (6.9)

Forgetting factor, eigenvalue

Stepsize

Radian frequency2(r f)

Singular value, largest singular value

Power of sensor noise

Power of source signals

DFT/FFT size

Frequency [Hz]

Sampling frequency [Hz]

V-1

Interchannel interference cost function (6.130), (6.132)
Intersymbol interference cost function (6.131), (6.133)
Multichannel intersymbol interference cost function (6.134)
Cost function for inverse modeling (2.57), (4.210), (5.114)
Cost function for system identification (2.4), (4.209), (5.113)
Iteration, block index £ kL

Block length

No. of sensors

No. of source signals
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250 List of Symbols
N Filter length

t Time sample index, discrete timg=t T,

t. Continuous time

T Sampling period

z z-transform operator

Vectors and Matrices

n Sensor-noise vector
Source-signal vector

u De-mixing system output vector
X

7]

Sensor-signal vector
X Estimation ofx
y g(u)
A A(z) Mixing system
H,H(z) Estimation of mixing systenA

HMmsEs A [WMMSE-S]*I

HVMsEx (2.8)

W, W(z) De-mixing system, estimation €1
WMMsEs (2.61)

VW MMSEx A [HMMSE-x]fl

0 Vector or matrix containing zeros

1 Vector or matrix containing ones

F DFT matrix (3.1)

I Identity matrix

J Exchange matrix (3.9)

J Circulant permutation matrix (3.26)

Circulant-time-reversal matrix (3.6)
Projection matrix

Projection matrix (3.12)

Block DFT matrix (3.7)

H o &

List of Symbols
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Mathematical Operators

A Diagonal matrix (Section 3.1.4)

A Block diagonal matrix (Section 3.1.7)

A Circulant matrix (Section 3.1.5)

A Block circulant matrix (Section 3.1.8)

aM Vector length

AMXN Matrix dimensions

[a],, mth vector elementd,,)

(Al mnth matrix elementd,,,,,)

[ Define a matrixA by it's mnth element

A Deletemth row andnth column of a matrix

A Complex conjugatiofu?, ]

AT Transpositiona,, ;]

AH Hermitian transposition, conjugate transpositj@f),, |
At Matrix inverse (A.13)

A# Moore-Penrose pseudoinverse (A.20)
A1) Elementwise inversion of a matrjx;, ! |

C(a) Generate circulant matrix (3.18)

C~1(A) First column vector of a circulan matrix (3.19)
x{A} Matrix condition numbery {A} 2 [|A||2/[|A~" |2
adj (A) Adjoint of a matrix (A.14)

ddiag (A)  Set off-diagonal elements & to zero (B.1)

det (A) Determinant of a matrix

diag (A) Vector with diagonal elements of matrix

diag [a] Generate diagonal matrix

off (A) Set diagonal elements & to zero (B.1)

rank (A) Rank of a matrix (Appendix A.7)

tr (A) Trace of a matrix (Appendix B)

max(.) Maximum

min(.) Minimum



252 List of Symbols

[ Round to next higher integer

[-] Round to next lower integer

<. >up Generalized remainder (D.2)

<. >c Symmetric remainder (D.4)

sign (.) Sign funktion

|| Absolute value

(-,-) Inner product, scalar product (C.1)

() 7 Inner product of polynomial matrices (C.4), (C.7), (C.10)

[]-]] Euklidian norm (vector))/.||, =01 (matrix)

I, p-norm

|-l 7 Frobenius norm (C.3)

.1l = Frobenius norm of polynomial matrices (C.18), (C.20), (C.21),
(C.22)

* Linear convolution (Section 3.2.1, 3.5.1)

® Circular convolution (Section 3.2.2, 3.5.1)

® Kronecker product [15, 46, 101]

@ Direct sum [15]

® Elementwise matrix multiplication (Hadamard product)

Pap(a(z))  Polynomial projection operator (D.10)

P (a(z)) Symmetric polynomial projection operator (D.11)

Pas(a(z))  Circular polynomial projection operator (D.69)

Pc (a(z)) Symmetric circular polynomial projection operator (D.70)

D(.].) Kullback-Leibler divergence (A.3)

E{} Expectation

o(.) Dirac impulse

0[] Kronecker delta

ps(.) Probability density function (pdf) of
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