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ABSTRACT

In this paper an adaptive broadband beamformer is presented which
is based on a partitioned frequency-domain least-mean-square algo-
rithm (PFDLMS). This block algorithm is known for its efficient
computation and fast convergence even when the input signals are
correlated. In applications where long filters are required but only
a small processing delay is allowed, a frequency domain adaptive
beamformer without partitioning demands a large FFT length de-
spite the small block size. The FFT length can be shortened signif-
icantly by filter partitioning, without increasing the number of FFT
operations. The weaker requirement on the FFT size makes the al-
gorithm attractive for acoustical applications.

1 INTRODUCTION

Adaptive broadband beamforming is becoming increasingly impor-
tant in acoustical applications for spatial filtering [1]. It can be im-
plemented in the time-domain when short filters meet the desired
performance. However, in acoustical applications related to hearing
aids or echo canceling, where a few hundred filter coefficients may
be required to achieve the desired performance, the computational
complexity, expressed in real multiplications, grows quadratically
with the filter length. A second drawback of a time-domain realiza-
tion is the poor adaptation speed and tracking ability due to the large
eigenvalue disparity typically arising in such a system.

These two problems can be circumvented by using a frequency-
domain LMS (FDLMS) algorithm where both filtering and adapta-
tion are carried out in the frequency-domain [2]. The linear convo-
lution (filtering) in the time-domain is derived from a cyclic convo-
lution using theoverlap-save method for fast filtering. This can be
implemented efficiently in the frequency-domain using fast Fourier
techniques [3].

As is known, the DFT generates signals that are approximately un-
correlated (orthogonal). As a result, the update of the filter weights
can be decoupled in the frequency-domain by using a normalized
LMS algorithm (NLMS) in every frequency bin, each with only one
coefficient. This leads to a more uniform convergence rate of the
adaptive filter [4].

The greatest disadvantage of a frequency-domain implementation
is the long processing delay caused by the block-wise execution of
the algorithm. In fact, this delay can be lowered by increasing the
overlap between two successive input blocks, but this decreases the
effectiveness of the overlap-save method. For applications where
this is unacceptable,partitioned frequency-domain adaptive filters
provide a way out of the problem [5].

2 ADAPTIVE BEAMFORMING
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Figure 1: Griffiths-Jim beamformer

2.1 Griffiths-Jim Beamformer

The system studied here is based on the adaptive beamformer de-
scribed by Griffiths and Jim [6]. As seen in Fig. 1 the array consists
of M sensors. Its input signalsam are transformed with a matrixB
into a main channel x1 and M − 1 auxiliary channels x2..xM . B is
anM × M matrix organized such thatxm (t) =∑M

i=1 bm,i ·ai (t) or, in
vector notation,x (t) = B a (t), wherea (t) = [a1(t),. . . ,aM (t)]T and
x (t) = [x1(t),. . . ,xM (t)]T .

The matrix B is set up such that it prevents atarget (in form of a
plane wave impinging perpendicularly on the array), from passing
through to the auxiliary channels, while letting it pass unimpeded
through to the main channel (xm(t) = 0 for m = 2..M if ai (t) = a(t)
for i = 1..M). One possible realization of B is (as described in [6]
for M = 3):

B =




1 1 1

1 −1 0

0 1 −1


 . (1)

2.2 Time-Domain Filtering and Adaptation

Each channelxm of the beamformer contains an FIR-filterhm . The
filter in the main channel,h1, is assumed to be time-invariant and
designed to shape the target spectrum.h2..hM are adaptive filters
updated after every time sample such as to minimize the power of
the beamformer output:

y (t) = y1 (t)−
M∑

m=2

ym (t) . (2)



If perfect adaptation occurs, only the target signal filtered withh1 (t)
remains at the beamformer outputy (t), whereas signal components
from other spatial directions (jammers) vanish.

For the adaptation it is assumed that target and jammers are uncor-
related, therefore the beamformer output is taken as the adaptation
error as well:y (t) = e (t). The filter update equations for real-valued
input signals are:

hm (t +1) = hm (t)+µ0xm (t)e (t) (3)

xm (t) = [xm (t) ,. . . ,xm (t − N +1)]T , (4)

whereµ0 is the step-size controlling the rate of convergence and
stability of the adaptation.

2.3 Frequency-Domain Filtering
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Figure 2: Frequency-domain realization.

The time-domain adaptive beamformer structure shown in Fig. 1
can, by analogy, be implemented in the frequency-domain (FDAB),
as shown in Fig. 2. A major difference is that the processing is now
done block-wise and not sample by sample. The new block input
vector of channelm is defined as

xm [k] = [xm (kL) ,. . . ,xm (kL + L −1)]T , (5)

where (.) and [.] denote the sample and block index, respectively
([.] , (.· L)). L is the block length andN is the filter length (number
of taps). The overlap-save method requires that the FFT lengthC
fulfills the condition

C ≥ N + L −1 (6)

so thatL new output samples per block can be derived which co-
incide with those of the appropriate linear convolution in the time-
domain. For the sake of simplicity it is assumed, throughout this pa-
per, that the filter length is a multiple of the block length (N = SL)
and the FFT lengthC is chosen to beN + L . Therefore, to obtain
the C-point DFTXm the lastS +1 block input vectors are needed:

Xm [k] = F




xm [k − S]

...

xm [k]


 . (7)

F is the Fourier matrix ((F)a,b = exp(− j 2π

C ab) for a,b = 0..C − 1)
and j = √−1. The filter output of channelm is

Y m [k] = H m [k] � Xm [k] , (8)

where� denotes the element-wise multiplication of two vectors.
H m [k] is the frequency-domain weight vector. Finally, the beam-
former output in the frequency-domain is, by analogy with (2), the
main channel output minus the auxiliary channel outputs:

Y [k] = Y 1 [k] −
M∑

m=2

Y m [k] . (9)

The time-domain block output vector y [k] =[
y (kL) ,. . . , y (kL + L −1)

]T
is obtained with the overlap-

save method by taking the lastL elements of the inverse DFT of
Y [k]

y [k] = Py ·F−1 ·Y [k] , (10)

where

Py = [
0L×(C−L) IL

]L×C
(11)

is the output projection matrix.I stands for the unity matrix and0
is a matrix whose elements are all zero. The superscript indicates
the matrix dimension. The output samples calculated with (10) cor-
respond to those of a linear time-domain convolution if the filter
coefficients are held constant overL samples. As can be seen from
(7) and (10),M + 1 FFT operations1 are required for the filtering
part.

2.4 Frequency-Domain Adaptation
Just as the filtering is carried out in the frequency-domain, the same
is true of the adaptation. For this the error signale [k] = y [k] has to
be transformed into the frequency-domain:

E [k] = F

(
0(C−L)

e [k]

)
. (12)

Note that this additional FFT is required to obtain an error signal
which, as opposed toY [k], is free of a cyclic convolution contri-
bution. Similar to (3) the same error signal is used for the update
of the filter weights, therefore only one additional FFT is needed,
regardless of the number of sensorsM.

Note also that only the filter coefficients in the auxiliary channels
are adapted, so the following update equations are valid only for
m = 2..M. The incremental updates of the frequency-domain weight
vectors are:

	Hm [k] = µ
m

[k] � X∗
m [k] � E [k] , (13)

where∗ denotes the complex conjugate.X∗
m [k] � E [k] corresponds

to a cyclic correlation between the input and the error sequence [2].
The step-size of the adaptation can be controlled in each frequency
bin byµ

m
[k] . The update equation for the adaptive coefficients is

H m [k +1] = Hm [k] +PH ·	Hm [k] , (14)

where

PH = F

[
IN 0

0 0C−N

]
F−1 (15)

sets the lastC − N elements of	hm [k] = F−1	Hm [k] to zero (gra-
dient constraint). The overlap-save method requires this to ensure
that each output vectory [k] is the counterpart of the corresponding
linear convolution.

1FFT or IFFT



2.5 Power-normalized step-sizes

To achieve fast convergence, even for a large eigenvalue spread of
the TD input autocorrelation matrix, the adaptation step-sizes are
adjusted independently in each frequency bin. This works because
of the convenient decorrelation property of the DFT [4], and is done
by a bin-wise power-normalization of the step-sizes:

µ
m

[k] = µ0 · P ((−1))
Xm

[k] , (16)

whereP Xm
[k] is a vector whose elements contain a power estimate

of the appropriate frequency bin. (.)((−1)) denotes the element-wise
inversion of a vector.µ0 is a constant that determines the rate of con-
vergence and the stability of the adaptive process. For the bin-wise
power estimation an exponential forgetting is used:

P Xm
[k] = λ · P Xm

[k −1]+ (1−λ) · (X ∗
m [k] � Xm [k]) , (17)

whereλ is the forgetting factor (0< λ < 1).

If the matrix B is chosen such that each auxiliary channel receives
the same amount of input power, e.g. (1), then the power estimation
(17) and step-size computation (16) have to be done only in one of
the auxiliary channels. This leads to a great saving in the number of
multiplications and inversions.

Note that if the input signals of the sensor array are not white, e.g.
speech, then care has to be taken about the FFT sizeC. For a too
small FFT size the decorrelation property of the FFT declines, which
results in a poorer adaptation performance. As a rule of thumb the
FFT size should not be smaller than the length of the correlation of
the appearing signals.

3 PARTITIONED FILTERS

As seen from (7) and (10), for every block,M FFTs and one IFFT
have to be computed for the filtering alone, which is quite a de-
manding task. When only a small processing delay is allowed (e.g.
hearing aid), but large filters are needed (N � L), then from each
block-operation only a small number ofL new output samples are
obtained compared to the large FFT lengthC � L . This discrepancy
comes from (6).
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Figure 3: Partitioning of the filter impulse response: (a) no parti-
tioning: P=1, S=6 (b) with partitioning:P=3, S=2.

The overlap is defined as the number of common input elements of
two succeeding FFTs divided by the total number of input elements
N/(N + L). For N � L the overlap is near unity, leading to a poor
computational yield of the overlap-save method.

To circumvent such a large overlap, the filters are partitioned intoP
subfilters of lengthN/P [5]. The underlying idea is to bring down

the length of the FFT. Because the filter length of each partition is
N/P, the new constraint on the lower bound of the FFT size is now:

C ≥ N/P + L −1 (18)

which is considerably smaller than (6) forN � L . Furthermore it
is assumed in this paper that each partition can be subdivided into
S segments of lengthL such that the total length of each filter is
N = PSL . An example of filter partitioning is shown in Fig. 3.

3.1 Partitioned Filtering

The block diagram of the partitioned frequency-domain adaptive
beamformer (PFDAB) is presented in Fig. 4. Both the filtering and
the adaptation is carried out in the frequency-domain. Similarly to
the FDAB, the input vectors for the first partitions (p = 0) are trans-
formed with (7) into the frequency-domain, i.e.Xm,0 [k] = Xm [k],
bearing in mind that the FFT lengthC and the number of seg-
mentsS are now smaller. The input vectors of the other partitions
(p = 1..P − 1) are delayed versions of the first partitions of every
channel:

Xm,p [k] = Xm

[
k − pS

]
. (19)

There is a total ofP · M partitions, each contributing

Y m,p [k] = H m,p [k] � X m,p [k] (20)

to the beamformer output, which is, similarly to (9), the output of
the main channel minus the auxiliary channels:

Y [k] =
P−1∑
p=0

(
Y 1,p [k] −

M∑
m=2

Y m,p [k]

)
. (21)

As for the FDAB, the time-domain output vector of the beamformer
y [k] is obtained with (10) and (11). Although the FFT length is
smaller with filter partitioning, the number of FFT operations re-
mains the same.

3.2 Partitioned Adaptation

As in section 2.4, the filter in the main path (m=1) is assumed to
be time-invariant, therefore the following update equations are only
valid for m = 2..M and p = 0..P −1. The adaptation error needed
for the incremental update of the filter coefficients is again given by
(12). Each filter partition is updated with the algorithm

	Hm,p [k] = µ
m,p

[k] � X∗
m,p [k] � E [k] (22)

Hm,p [k +1] = Hm,p [k] +PH ·	H m,p [k] (23)

PH = F

[
ISL 0

0 0C−SL

]
F−1 (24)

which is the appropriate counterpart to the FDLMS (13), (14) and
(15). Similar to (19) the step-size vector is conveyed from one parti-
tion to the next:µ

m,p
[k] = µ

m

[
k − pS

]
whereµ

m
[k] is the same as

in (16). Note that as long as the FFT length is not smaller than the
correlation length of the input signals, the decorrelation property of
the FFT is preserved and the adaptation behavior is unaffected.
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Figure 4: Block diagram of the partitioned frequency-domain adaptive beamformer.z−S denotes a delay ofS blocks.

As seen from (23), the gradient constraint (24) requires 2 FFT oper-
ations for each partition. This makes a total of 2P(M −1)+1 FFT
operations only for the adaptation, if (12) is also taken into account.
Even for small partitioning this number becomes the dominant con-
tribution in terms of FFT operations.

This can be drastically reduced with a slight modification of the co-
efficient update (23):

H m,p [k +1] =




PH · (H m,p [k] +	H m,p [k])

if p(m −2) = < k >P(M−1)

H m,p [k] +	H m,p [k] else

(25)

where< a >b = a − ⌊ a
b

⌋ · b is the remainder whena is divided by
the non-zero integerb.

In every block, one of theP(M − 1) adaptive filter partitions is
picked out and constrained such that the lastC − SL elements of
F−1Hm,p [k] are set to zero (alternated weight constraint). Therefore
only 3 FFT operations remain for the adaptation part, independently
of M and P, which is a substantial reduction. Different from (23),
not only the incremental update	Hm,p [k] is premultiplied withPH ,
but the whole weight vectorH m,p [k].

Here it is assumed that the incremental update	H m,p [k] is much
smaller thanH m,p [k] itself, and that if the lastC − SL elements of
F−1Hm,p [k] are set to zero only everyP(M − 1) blocks, they will
not deviate much. Because the overlap-save constraint is violated
between two such ‘clearing operations’, the filter output is disturbed
by wrap-around effects of the cyclic convolution. This degradation
can be controlled by chosing a smaller step-sizeµ0.

4 SUMMARY

In this paper an efficiently implemented and fast converging adap-
tive beamformer is proposed which uses a partitioned frequency-
domain LMS algorithm. Whenever long filters are needed but only

a small processing delay is allowed, filter partitioning can lead to a
substantial reduction of the minimum required FFT length, without
increasing the number of FFT operations.

Furthermore an alternative filter update rule is presented based on an
alternated weight constraint which achieves almost the same perfor-
mance, but requires only two instead ofP(M −1) FFTs2. Finally, it
is shown that the minimum total number of FFT operations amounts
to M +4 for the filtering and adaptation. These properties make the
algorithm very suitable for broadband spatial filtering in acoustical
applications.
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