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ABSTRACT
A computationally simple nonlinearity in the form of a threshold
device for the blind separation of sub-Gaussian signals is derived.
Convergence is shown to be robust, fast, and comparable to that of
more complex polynomial nonlinearities. Together with the known
signum nonlinearity for super-Gaussian distributions, which basi-
cally is a threshold device with the threshold set to zero, the gen-
eral threshold nonlinearity (with an appropriate threshold) can sep-
arate any non-Gaussian signals.

1. INTRODUCTION

Blind signal separation using higher-order statistics either explic-
itly or implicitly has attracted many researchers whose main goal
is to separate a set of mixed signals as fast as possible with the
smallest residual mixing. Throughout this paper we assume a lin-
ear mixing and separation process as depicted in Fig. 1.
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Figure 1: Blind source separation model.

The measured signals x = [x1, . . . , xMS ]T to be processed are lin-
ear combinations of the original source signals s = [s1, . . . ,sMS ]T ,
weighted by scalars, which are the elements of the mixing ma-
trix A. MS denotes the total number of sources and sensors. Re-
covery of the signals is carried out by a blind adaptive algorithm
adjusting the coefficients of the separation matrix W. The output
of the algorithm is therefore

u = [u1, . . . ,uMS ]T = Wx = WAs = Ps. (1)

In order to successfully separate the signals, P = WA should ap-
proximate as closely as possible a scaled permutation matrix. A
possible update equation for the separation matrix W results from
either the minimization of the mutual information of the output
signals, the output entropy maximization [1], the ML estimator [2],
the maximum negentropy [3], or using a Bussgang technique [4],
and applying the natural gradient [5] to these methods

Wt+1 = Wt +µ
(

I−g(u)uH
)

Wt (2)

where µ is the step size, I the identity matrix, and g(u) is known
as the Bussgang nonlinearity [6]. This nonlinearity is the central
element of blind signal separation. Its role is defined by the objec-
tive or contrast function, which often is some kind of information-
theoretic measure, such as entropy or mutual information. Very
frequently, the nonlinearities derived by different methods are sim-
ilar in nature for a given probability distribution of the signals to
separate. In fact, the exact curve of the nonlinearity might not mat-
ter [7]. Whereas the minimization of the mutual information leads
to a pdf-independent polynomial with several terms [5], both the
Infomax and the Maximum-Likelihood approach [8] lead to

g(ui ) = −
∂ log pS(ui )

∂ui
= −

p′
S(ui )

pS(ui )
(3)

where pS(ui ) and p′
S(ui ) are the pdf and its derivative, respectively,

of the source signals. Eq. (3) is referred to as the score function
of a certain pdf pS(.). We assume the same probabilistic model for
all source signals, e.g. pSi (.) = pS(.). Note that the nonlinearity is
used solely for the update process. The separation itself is obvi-
ously linear, since the mixing process is linear by assumption. This
is particularly important for acoustic applications, where nonlinear
signal processing would generate unacceptable audible distortion.

2. SCALING OF THE NONLINEARITY

By the scaling invariance, which is an inherent property of blind
signal separation, it is impossible to recover the original power of
the source signals without further knowledge. When the original
power of the sources is unknown, it is reasonable to normalize the
power after the separation matrix to

E
[

uuH
]

= I. (4)

This can be achieved by a separate automatic gain control stage
(AGC) or by scaling the nonlinearity g(.) properly. The Bussgang
property [9] states that an equilibrium point of Eq. (2) is reached
when

E
[

g(u)uH
]

= I. (5)

Hence, for every component u i of the vector u, i = 1, . . . , MS, we
need to scale g(u i ) such that

∫ ∞

−∞
pS(ui )g(ui )u

∗
i dui = 1 (6)

if pS(.) is a source distribution with E[|S|2] = 1. Note, that for the
score function (3) of most common distributions, (6) is satisfied
without further scaling.



3. THE FORM OF THE NONLINEARITY

The basic form of the nonlinearity depends on the distribution
of the source signal. Signals with negative kurtosis (normalized
fourth-order cumulant) are referred to as sub-Gaussian, positive-
kurtosis signals as super-Gaussian. For sub-Gaussian distributed
real signals, a nonlinearity of the form g(u i ) = a · u3

i is often se-
lected [10]. a is determined by (6). In fact, any nonlinearity of the
form

g(ui ) = a ·u p
i , p odd, p ≥ 3 (7)

will separate a mixture of sub-Gaussian signals. p being odd en-
sures the validity of the sign after the nonlinearity. If (7) is rewrit-
ten as

g(ui ) = a · |ui |p−1ui , p > 1 (8)

p is no longer restricted to odd integers, but can be any rational
number greater than one. (8) also has the advantage that it is di-
rectly applicable to complex signals, as will be seen in Section 6.

For distributions which belong to the family of generalized
Gaussian distributions

pS(s) =
α

2β0
(

1
α

) e−
(

|s|
β

)α

(9)

with α > 2 for sub-Gaussian signals, the nonlinearity according
to (3) is

g(ui ) = α

(

0
(

3
α

)

0
(

1
α

)

)α/2

sign(ui ) · |ui |α−1. (10)

0(.) is the gamma function given by 0(a) =
∫∞

0 xa−1 exp(−x)dx
and shows a recursive property similar to the factorial function,
0(a + 1) = a0(a). The uniform distribution can be modeled as a
generalized Gaussian distribution in the limit α → ∞. For large
α, (10) yields

g(ui )

∣

∣

∣

∣

α�1

≈ α

(

sin
(

π

α

)

sin
(

3π

α

)

)α/2

sign(ui ) · |ui |α−1. (11)

However, for large α the sine functions are well represented by the
first term of their Taylor expansions, so (11) becomes

g(ui )

∣

∣

∣

∣

α�1

≈ α

(

1

3

)α/2

sign(ui ) · |ui |α−1 = α
1

ui

(

u2
i

3

)α/2

. (12)

In the limit for α approaching infinity we get a threshold nonlin-
earity

lim
α→∞

g(ui ) =
{

0, |ui | <
√

3
∞· sign(ui ), |ui | ≥

√
3

(13)

with a threshold of
√

3 for a uniform distribution with unity power.
The normalized uniform distribution only has a finite probability
density for |u i | <

√
3; outside it is zero. With g(u i ) being zero for

small ui , Wt+1 in (2) grows gradually, thereby increasing u i . When
ui ’hits’ the threshold, it is pushed back hard (infinite gain) into the
region where g(u i ) = 0, so that the amplitude of u i is clearly con-
trolled. The infinite gain in (13) will of course cause convergence
problems for a finite step size. The gain can therefore be traded

off against a lower threshold ϑ for a specified output power. Solv-
ing (6) for a given threshold ϑ results in a finite gain of

a =
2
√

3

3−ϑ2
(14)

for 0 < ϑ <
√

3. The resulting threshold nonlinearity

g(ui ) =
{

0, |ui | < ϑ
2
√

3
3−ϑ2 sign(ui ), |ui | ≥ ϑ

(15)

is very simple to implement and reduces computational complex-
ity, compared with the evaluation of polynomials. An alternative
nonlinearity for sub-Gaussian signals has been derived by Lam-
bert [11], also using the MAP rule. Fig. 2 shows the threshold
nonlinearity in comparison with other nonlinearities of the form
given in (10) with proper scaling applied.
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Figure 2: Threshold nonlinearity (ϑ = 1.5) and other scaled non-
linearities suitable for the separation of uniformly distributed sig-
nals.

A similar, simple nonlinearity is available for the Laplace
distribution (α = 1), which is a super-Gaussian distribution,
where (10) leads to

g(ui ) =
√

2sign(ui ). (16)

4. UNIFORMLY DISTRIBUTED SIGNALS

To separate uniformly distributed real signals, very often a nonlin-
earity of the form given by (7) is used. Scaling according to (6)
leads to

g(ui ) =
p +2

3
p+1

2

u p
i , p odd, p ≥ 3. (17)

For the following simulation of the convergence behavior of blind
signal separation using the threshold device, MS = 10 indepen-
dent, uniformly distributed source signals are mixed by matrix A,
whose condition number is chosen χ(A) = 100 (the singular val-
ues of A are logarithmically distributed). The step size µ is tuned
such as to reach a residual mixing of JICI(P) = −20dB, where the
performance measure

JICI(P) =
1

MS

( MS
∑

i=1

MS
∑

k=1

p2
ik

max
k

p2
ik

)

−1 (18)



is the average interchannel interference and is described in [12].
Fig. 3 displays the performance curves for different nonlinearities,
such as (17) for different p, and the nonlinearity derived from the
application of the Gram-Charlier expansion [5]

g(ui ) =
3

4
u11

i +
15

4
u9

i −
14

3
u7

i −
29

4
u5

i +
29

4
u3

i . (19)

Clearly, the threshold device shows a convergence behavior com-
parable to that of more complicated nonlinearities. Best results
were achieved with a threshold of around ϑ = 1.5.
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Figure 3: Convergence curves of blind separation with different
nonlinearities for uniformly distributed signals.

5. M-PAM SIGNALS

M-ary pulse amplitude modulation, or equivalently M-ary ampli-
tude shift keying is a linear digital modulation scheme whose pdf
may be approximated by a uniform distribution, particularly for
large M . Applying the scaling equation (6) to Eq. (8) yields a
suitable nonlinearity

g(ui ) =
M
2

(

M2−1
3

)

p+1
2

∑M/2
m=1(2m −1)p+1

· |ui |p−1ui , p > 1. (20)

Note, that the term in (20) that is written as a fraction is merely the
scaling factor, and is e.g. reduced to 1 for M = 2. Again, Eq. (20)
may be replaced by a threshold nonlinearity as in Eq. (15) with an
appropriate scaling factor.

6. M-QAM SIGNALS

M-ary quadrature amplitude modulation is an important digital
modulation format, which can be regarded as an extension of
pulse amplitude modulation to the complex baseband representa-
tion. For the common case that M is an even power of two, e.g.
M = 16, I and Q parts are independent of each other. The distribu-
tion is sub-Gaussian, and similarly to the uniform distribution and
the M-PAM signals, nonlinearities of the form

g(ui ) =
4 ·5

p+1
2

1+2 ·5
p+1

2 +3p+1
|ui |p−1ui , p > 1 (21)

lead to separated, normalized output signals. The mixing matrix
A of a complex baseband representation is generally complex, in

order to model amplitude and phase variations. The separation ma-
trix W must therefore also be chosen to be complex. In addition to
the amplitude and permutation invariance, we get a phase invari-
ance, or in other words, the entries of P in (1) are complex. As a
consequence, the signal vectors s, x and u are now assumed to be
complex. The threshold nonlinearity for QAM signals is chosen as

g(ui ) =
{

0, |ui | < ϑ

a ui
|ui |

, |ui | ≥ ϑ . (22)

It has been found by simulations, that ϑ = 1.3 is an effective
threshold value for 16-QAM. The scaling factor a = 2.98 is ob-
tained from evaluating the scaling equation (6) for the discrete 16-
QAM distribution. To adjust for residual mixing, we chose a = 4
to obtain unit variance signals.

The nonlinearities so far leave the initial rotation of the signal
constellation unchanged. Rather than applying the nonlinearity to
the complex signal, it can be applied individually to the real and
imaginary part of the signal, which, by a further use of the scaling
equation (6), leads to nonlinearities of the form

g̃(ui ) =
10

p+1
2

1+3p+1

(

u p
R,i + ju p

I,i

)

= g(uR,i )+ jg(uI,i ) (23)

with uR,i = Re(ui ) and uI,i = Im(ui ). Likewise, for the vector form
we assign uR = Re(u) and uI = Im(u). The Bussgang property can
then be written as

E[I− g̃(u)uH ] = E
[

I−
(

g(uR)+ jg(uI)
)(

uT
R − juT

I

)]

= E
[

I− g(uR)uT
R − g(uI)uT

I

+ j
(

g(uR)uT
I − g(uI)uT

R

)]

= 0. (24)

The Bussgang property now requires for the diagonal elements

E[g(uR,i )uR,i + g(uI,i )uI,i ] = 1 (25)

E[g(uR,i )uI,i − g(uI,i )uR,i ] = 0 (26)

and for the off-diagonal elements

E[g(uR,i )uR,k + g(uI,i )uI,k ] = 0, i 6= k (27)

E[g(uR,i )uI,k − g(uI,i )uR,k ] = 0, i 6= k. (28)

(27) and (28) make the output signals mutually independent, while
(25) ensures that the signals are properly scaled. (26) makes the
real and imaginary part of an output signal independent of each
other, forcing the signal constellation to rotate into its right posi-
tion, or into a mirrored, or rotated-by-a-multiple-of-π/2, version
of itself. This effect can be exploited for phase synchronization.

Similarly to the last experiment for uniform distribution, ten
16-QAM sources were mixed using a complex mixing matrix A
with χ(A) = 100 and logarithmically spaced singular values. Per-
formance curves are depicted in Fig. 4. It can be observed that
nonlinearities applied individually to the real and imaginary parts
tend to separate the signals faster than complex nonlinearities. The
effect to the back-rotation of the signal constellation is shown
in Fig. 5.

Similar results can be obtained for the convergence speed of
256-QAM signals (see Fig. 6). Overall convergence is slightly
slower for this modulation scheme than for that of 16-QAM.

It is relatively straightforward to extend the blind separation of
instantaneously mixed sources using the threshold nonlinearity to
do single-channel or multichannel blind deconvolution, which will
be the subject of future work. For an efficient implementation, the
methods described in [12] may be applied.
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Figure 4: Convergence curves of blind separation with different
nonlinearities for 16-QAM signals.
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Figure 5: Signal constellation diagrams of 16-QAM signals after
separation with different nonlinearities.
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Figure 6: Convergence curves of blind separation with different
nonlinearities for 256-QAM signals.

7. CONCLUSIONS

A simple threshold device has been shown to separate sub-
Gaussian signals, e.g. M-ary PAM and QAM. This nonlinearity
is simple to implement, very robust, and results in a convergence
speed that is comparable to that of other known nonlinearities. If
real and imaginary parts of the signals are treated separately, phase
equalization up to an ambiguity of π/2 can be achieved.
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