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ABSTRACT

Blind source separation (BSS) is a problem found in many applica-
tions related to acoustics or communications. This paper addresses
the blind source separation problem for the case where the source
signals are non-stationary and the sensors are noisy. To this end,
we propose several useful elementary cost functions which can be
combined to an overall cost function. The elementary cost func-
tions might have different objectives, such as uncorrelated output
signals or power normalization of the output signals. Additionally,
the corresponding gradients with respect to the adjustable param-
eters are given. We discuss the design of an overall cost function
and also give a simulation example.

1. INTRODUCTION

1.1. Problem description

The generalM �M mixing process is shown in Fig. 1 and de-
scribed as

xt = Ast + nt (1)

wherest = (s1; : : : ; sM)Tt , xt = (x1; : : : ; xM)Tt , andnt con-
tain the samples of the unknown source signals, the sensor signals,
and the sensor noise at timet, respectively, andAM�M is the un-
known mixing matrix. The blind source separation problem is de-
fined as finding a separation matrixWM�M such that the output
of the separation process

ut =Wxt =W(Ast + nt) = Gst +Wnt (2)

is a vector of waveform-preserving estimates of the unknown
source signals by using only the time series of the measured sensor
signalsfxtg for t = 1; 2; : : :. G is the total transfer matrix of the
global system.

In the following, our main objective is to find a so-calledzero-
forcing solution forW such thatG becomes close to a scaled
permutation matrix. This is equivalent to minimizing theinter-
channel interference (ICI) at the outputu, regardless of a possi-
ble noise amplification byW. In fact, there are different statis-
tical criteria which can be exploited for blind signal separation,
e.g., non-Gaussianity, non-whiteness, cyclo-stationarity, and non-
stationarity of the source signals. In the following, we assume
non-stationary source signals.
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Fig. 1. Blind source separation setup with sensor noise.

1.2. Notation

The notation used throughout this paper is the following: Vectors
are written in lower case, matrices in upper case. Matrix and vector
transpose, complex conjugation and Hermitian transpose are de-
noted by(:)T , (:)�, and(:)H , ((:)�)T , respectively. The sample
index is denoted byt. The identity matrix is denoted byI, a vector
or a matrix containing only zeros by0. Ef:g denotes the expecta-
tion operator. Vector or matrix dimensions are given in superscript.
The Frobenius norm and the trace of a matrix are denoted byk : k

F

andtr (:), respectively.a = diag(A ) is a vector whose elements
are the diagonal elements ofA anddiag(a ) is a square diago-
nal matrix which contains the elements ofa. ddiag(A ) zeros the
off-diagonal elements ofA and

o�(A ) ,A� ddiag(A ) (3)

zeros the diagonal elements ofA. For a square matrixA we have
ddiag(A )=diag( diag(A ) ).

1.3. Assumptions

In addition to the problem proposed above, we make the following
assumptions:

A1 Time-invariant mixing matrixA.
A2 A has full rankM .
A3 Source signalssm, m = 1; : : : ;M , are mutually

independent.
A4 All source signalssm but possibly one are non-stationary.
A5 All source signals are unknown
A6 The sensor noise signals are stationary additive white

Gaussian processes and mutually independent.
A7 The source signals and the sensor noise are mutually

independent.

As a consequence,A3 andA6 imply

Rsst , Efsts
H
t g = diag(�s

2
1;t; : : : ; �s

2
M;t ) (4)

Rnn , Efntn
H
t g = diag(�n

2
1; : : : ; �n

2
M ) . (5)



and from (1) andA7 we have

Rxxt , Efxtx
H
t g = ARsstA

H +Rnn . (6)

2. OVERALL COST FUNCTION

In order to successfully separate the unknown source signals, we
define anoverall cost function J which consists of a weighted sum
of elementary cost functions.

J (W;Rnn) =
X
i

�iJi(W;Rnn ) . (7)

The elementary cost functionsJi can have different objectives,
e.g., decorrelation of the output signals, normalization of the sep-
aration matrixW, output power control, etc.

After choosing a suitable cost functionJ , we use a stochastic
gradient algorithm to find the unknown parameters which mini-
mizeJ

Wk+1 =Wk +�Wk (8)

�Wk = ��rW fJ (Wk;Rnn )g (9)

where�Wk is the incremental update ofWk, and

rW fJ (Wk;Rnn )g =
X
i

�irW fJi(Wk;Rnn)g (10)

is the gradient of the overall cost functionJ with respect toW.
In the case whereRnn is unknown, we can also use a stochas-

tic gradient algorithm to find an estimatêRnn

R̂nnk+1 = R̂nnk +�R̂nnk (11)

�R̂nnk = ��rRnn

n
J (Wk; R̂nnk)

o
(12)

where

rRnn

n
J (Wk; R̂nnk)

o
=
X
i

�irRnn

n
Ji(Wk; R̂nnk)

o
.

(13)

3. ELEMENTARY COST FUNCTIONS

In this section, we present some elementary cost functions which
are effective for blind signal separation of non-stationary source
signals. A summary of elementary cost functions and their corre-
sponding gradients is given in Table 1. Appendix A lists all equa-
tions used for the derivation of the gradients.

3.1. Decorrelation of output signals

An elementary cost function for blind signal separation of non-
stationary source signals can be a cost function which penalizes
uncorrelated output signals. While decorrelation of the output sig-
nals is a necessary but not sufficient criterion for the separation of
stationary source signals, the decrorrelation criterion can be suf-
ficient for non-stationary source signals under some weak condi-
tions. We define an elementary cost function

J1 ,



 o��W (Rxx �Rnn )W

H
�


2

F
(14)

which measures the deviation from having uncorrelated output
signals in the noise-free case. Since we want to adaptW by a

stochastic-gradient learning algorithm, we need the gradient of the
cost function with respect toW

rWJ1 = 4o�
�
W (Rxx �Rnn)W

H
�
W (Rxx �Rnn)

(15)

which we can use in (9) to updateW. With (14) we obtain a bias-
free separation matrixW after convergence. This goes also in
line with the bias-removal technique proposed by Douglaset al. in
[1]. However, ifRnn is unknown, by simply settingRnn =0 we
usually obtain a biased separation matrix in the noisy case, except
for some special cases, e.g., ifRnn is a scalar matrix andA is a
unitary matrix. For this reason, ifRnn is unknown we also use a
stochastic gradient method to estimateR̂nn

R̂nnk+1 = R̂nnk +�R̂nnk (16)

�R̂nnk = ��rRnn

n
J1(Wk; R̂nnk )

o
. (17)

We restrict ourself to adapt a diagonal matrix̂Rnn , since we
assume fromA6 that the sensor noise is mutually uncorrelated.
Therefore,

rRnnJ1 = �4 ddiag
�
W

H o�
�
W

�
Rxx � R̂nn

�
W

H
�
W
�

(18)

where we choose the initial valuêRnn0 to be a diagonal matrix.
Moreover, if we know that each sensor has the same noise charac-
teristics, i.e.�n

2
m=�2n , we only have to adapt

�̂n
2
k+1 = �̂n

2
k +��̂n

2
k (19)

��̂n
2
k = ��r�2n k

�
J1(Wk; �̂n

2
k)
	

(20)

with

r�2n
J1 = �

4

M
tr
�
W

H o�
�
W

�
Rxx � �̂n

2
k I

�
W

H
�
W
�

(21)

whereR̂nn = �̂n
2
k I is the current estimate ofRnn .

3.2. Constraints on the separation matrix W

SinceW=0 also minimizes the elementary cost function in (14),
we need an additional constraint which prevents this trivial solu-
tion. The elementary cost function

J3 ,



ddiag�WW

H � I
�


2

F
(22)

has its minimum when the row vectors ofW are normalized to
have length one. An alternative elementary cost function is

J6 , k ddiag(W � I ) k2
F

(23)

which, if included in the overall cost functionJ , steers the diago-
nal elements ofW towards+1.

3.3. Output power normalization

An alternative to directly constrainW, is to use a constraint on the
average output power. The elementary cost function

J2 ,



 ddiag�WRxxW

H � I
�


2

F
(24)

steers the average long-term output power of the output signalsu

to become one.



3.4. Relationship to other algorithms

An adaptive algorithm using the cost functionJ =J1+�2J2 with
Rnn =0 was recently published by Jones [2]. Another algorithm
was proposed by Parra and Spence [3] which uses a cost function
similar toJ1, except that the assumption having stationary noise
signals is dropped and the powers of the output signalsum are
estimated too. In addition, an extension is given for the case where
the source signals are convolutively mixed. Related work was also
done by Matsuokaet al. in [4].

4. SOURCE SEPARATION VIA EIGENVALUE
DECOMPOSITION

We now present an alternative method, which is inspired from a
Linear Algebra problem, namely the simultaneous diagonalization
of two matrices [5], which is only possible if the two matrices
commute. In our case, the two matrices we want to diagonalize
are(Rxxt1 �Rnn) and(Rxxt2 �Rnn), wheret1 andt2 are two
different time instants. First, let us assume thatRxxt1 , Rxxt2 ,
andRnn are known. Then we can define a matrixQ as

Q ,
�
Rxxt1 �Rnn

�
�1 �

Rxxt2 �Rnn
�

(25)

= [ARsst1A
H ]�1ARsst2A

H (26)

= A
�H
R
�1
sst1

Rsst2A
H . (27)

Since the source signalssm are mutually independent by assump-
tion, and therefore mutually uncorrelated,Rsst1 andRsst2 are
diagonal matrices, and so isR�1

sst1
Rsst2 . Hence, the similarity

transform in (27) is just an eigenvalue decomposition (EVD) of
Q. Since an EVD is not unique, we can decomposeQ as

Q = T���T�1 (28)

where the column vectorstm of T are the eigenvectors ofQ and
have unity length, i.e.ktmk2=1. Furthermore,

��� = diag(�1; : : : ; �M ) , R�1
sst1

Rsst2 (29)

contains the eigenvalues�m = �2m;t2=�
2
m;t1

of Q. �m is the
power ratio of the source signalsm between time instantt2 and
t1. If all �m are distinct,W = TH is a separation matrix
such thatG becomes a scaled permutation matrix. In that case,
W (Rxxt �Rnn)W

H is diagonal for allt. Hence, under these
conditions, the blind signal separation problem for non-stationary
source signals can be tracked down to solving a single eigenvalue
decomposition task. Problems with this method arise if an eigen-
value�m appears with multiplicity greater than one, because then
Q has an eigenspace which does not uniquely define the column
vectors ofT, which are the row vectors ofW. This problem can
be greatly reduced by simultaneously diagonalizing a set ofK cor-
relation matricesfRxxtk �Rnng

K
k=1.

If Rnn is unknown, it can be replaced by an estimateR̂nn .
However, the drawback of this method is that the eigenvectorstm
are quite sensitive to bad estimates ofRxx andRnn . It can even
causeQ to have negative eigenvalues�m, which have no physical
meaning anymore. The solution of the EVD method can also be
helpful to obtain a good initial valueW0 in (8).

A similar EVD method was used by Molgedey and Schuster
in [6] for the separation of stationary, but temporally correlated
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Fig. 2. Learning curve measuring the interchannel interference.

source signals. The simultaneous diagonalization of two correla-
tion matrices can also be solved by a generalized eigenvalue de-
composition, as pointed out by Tsatsanis and Kweon in [7]. Re-
cently, Choi and Cichocki [8, 9] have proposed a method for blind
separation of non-stationary and non-white source signals using
simultaneous diagonalization of time-delayed correlation matrices
Rxxt(� ) , Efxtx

H
t��g for � 6= 0.

5. SIMULATION

In the following, we give a simulation example to analyze the
behavior of the proposed algorithm. We measure the average
channel-wise interchannel interference (ICI) as our performance
criterion of interest. The overall cost function is a combination of
J1 and J3. Hence, we adapt Wk with (8) and

�Wk = �
0:4

0:05 + krWJ1 kF
rWJ1 � 0:1rWJ3 (30)

which includes a step-size normalization. �̂n
2
k is adapted with (19)

to (21) and �=0:04. The randomly chosen complex mixing ma-
trices A are normalized such that their largest singular value is al-
ways 1, the condition numbers are �(A)=1, 3, and 5, and the sin-
gular values ofA are logarithmically distributed. We haveM=10
stationary Gaussian-distributed source signals s0, each being com-
plex and with power �2s=1. The non-stationarity of the source sig-
nals is introduced by a block-wise randomly chosen complex gain
Km;k 2 [0:1; 1] for every source signal, e.g. sm;t=Km;k � s

0

m;t.
Hence, �s

2
m;k 2 [0:01; 1]. Furthermore, we have �2n = 0:1. The

correlation matrices Rxxk are estimated over blocks of L = 100
samples. Fig. 2 shows performance curves averaged over 30 runs
for different �(A). We see that convergence is reached quite fast,
despite the high noise level. However, the performance depends
strongly on the condition number of A.

6. SUMMARY

We have presented several elementary cost functions, which can be
combined to an overall cost function for blindly separating a noisy
mixture of non-stationary source signals. In addition, the gradients
of the elementary cost functions are given, which can be used for
an online stochastic-gradient learning algorithm for adjusting the
parameters of interest. Finally, a simulation example is given.



Table 1. Elementary cost functions with corresponding gradients

objective elementary cost function Ji (W;Rnn) gradient rJi (W;Rnn)

uncorrelated output signals J1 ,




 o�
�
W (Rxx �Rnn )W

H
� 


2

F

rWJ1=4o�
�
W (Rxx �Rnn )W

H
�
W (Rxx �Rnn )

ifRnn is diagonal rRnnJ1=�4 ddiag
�
W

H o�
�
W (Rxx �Rnn )W

H
�
W

�

ifRnn=�2n I r
�2

n
J1=� 4

M
tr
�
W

H o�
�
W

�
Rxx � �

2

n I

�
W

H
�
W

�

normalized output power J2 ,




 ddiag
�
W (Rxx�Rnn)W

H
�
� I




2
F

rWJ2=4ddiag
�
W (Rxx �Rnn )W

H � I
�
W (Rxx �Rnn )

ifRnn is diagonal rRnnJ2=�4 ddiag
�
W

H ddiag
�
W (Rxx�Rnn)W

H � I
�
W

�

ifRnn=�2n I r
�2

n
J2=� 4

M
tr
�
W

H ddiag
�
W (Rxx �Rnn )W

H � I
�
W

�

row-normalizedW J3 ,




 ddiag
�
WW

H � I
� 


2

F

rWJ3=4ddiag
�
WW

H � I
�
W

column-normalized W J4 ,




 ddiag
�
W

H
W � I

� 


2
F

rWJ4=4W ddiag
�
W

H
W � I

�

norm constraint J5 ,

�
kW k2

F
�M

�
2

rWJ5=4
�
kW k2

F
�M

�
W

diag(W )=1 J6 , k ddiag(W � I ) k2
F

rWJ6=2ddiag(W � I )

real diag. elem. ofW J7 ,




 ddiag
�
W �WH

� 


2
F

rWJ7=4ddiag
�
W �WH

�

row-scaled unitaryW J8 ,




 o�
�
WW

H
� 


2

F

rWJ8=4o�
�
WW

H
�
W

column-scaled unitaryW J9 ,




 o�
�
W

H
W

� 


2
F

rWJ9=4W o�
�
W

H
W

�

unitaryW J10 ,




WW
H � I




2
F

rWJ10=4
�
WW

H � I
�
W = 4W

�
W

H
W � I

�

jdet (W) j=1 J11 , j log (jdet (W) j) j2 rWJ11=2 log (jdet (W) j) �W�H

A. COMPUTATION OF THE GRADIENT OF A COST
FUNCTION WITH RESPECT TO A MATRIX

The following equalities are useful for the computation of Frobe-
nius norms and trace functions [10]

kA k2
F
= tr(AH

A) (31)

k o�(A ) k2
F
= kA k2

F
� k ddiag(A ) k2

F
(32)

tr (AB) = tr (BA) (33)

tr (A ddiag(B )) = tr (ddiag(A )B) (34)

= tr (ddiag(A ) ddiag(B )) (35)

tr (o�(A ) ddiag(B )) = 0 . (36)

For the computation of the gradient of a cost function based on
the Frobenius norm, we have to differentiate a trace function
with respect to a complex matrix W ,

�
wre
mn + jwim

mn

�
. After

Haykin [11], the complex gradient can be defined as

rW = 2
@

@W�
=

�
@

@wre
mn

+ j
@

@wim
mn

�
. (37)

The following equalities are useful for the differentiation of a trace
function with respect to a complex matrix

@

@W�
tr (WA) = 0 (38)

@

@W�
tr(WH

A ) = A (39)

@

@W�
tr(WH

AWB ) = AWB (40)

@

@W�
tr(WH

AW
H
B ) = AW

H
B+BWH

A . (41)
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