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Abstract. We address the blind source separation (BSS) problem for
the convolutive mixing case. Second-order statistical methods are em-
ployed assuming the source signals are non-stationary and possibly also
non-white. The proposed algorithm is based on a joint-diagonalization
approach, where we search for a single polynomial matrix that jointly
diagonalizes a set of measured spatiotemporal correlation matrices. In
contrast to most other algorithms based on similar concepts, we define
the underlying cost function entirely in the time-domain. Furthermore,
we present an efficient implementation of the proposed algorithm which
is based on fast convolution techniques.

1 Introduction

1.1 Problem formulation

Signal mixing The system setup is described as follows: Ms unknown mutually
uncorrelated source signals sm are filtered and mixed by an unknown time-
invariant finite-length causal convolutive mixing system AMx×Ms , {An}

Na

n=0

resulting in Mx measurable sensor signals xm. The source- and sensor-signals are
stacked in vectors, s and x, respectively. For simplicity we neglect any additive
noise components. Hence, the convolutive mixing process is described as x=A∗s
where

x(t) = (A ∗ s)(t) =
∑Na

n=0
An s(t − n) (1)

or, written in the z-domain,

x(z) ,
∑

t
x(t) z−t = A(z) s(z) . (2)

Signal separation The Mx sensor signals xm are mixed and filtered with a
finite-length non-causal convolutive separation system WMu×Mx , {Wn}

Nw

n=−Nw

resulting in Mu output signals um. The separation process is described as u =
W ∗ x=W ∗A ∗ s, or written in the z-domain

u(z) = W(z)x(z) = W(z)A(z) s(z) . (3)



The objective of the blind-source-separation problem for the convolutive mixing
case is to find a W(z) such that the global system can be written as

G(z) = W(z)A(z) = PD(z) (4)

where D(z) is a diagonal polynomial matrix and P is a permutation matrix. In
the following we assume that Mu = Ms ≤ Mx, and that the source signals and
mixing system can be complex valued. Depending on A(z), Mx, and Ms perfect
separation is possible for a finite Nw.

1.2 Mathematical preliminaries

Basic notation The notation used throughout this paper is the following:
Vectors are written in lower case, matrices in upper case. Matrix and vector
transpose, complex conjugation and Hermitian transpose are denoted by (.)T ,
(.)∗, and (.)H , ((.)∗)T , respectively. The sample index is denoted by t. The
identity matrix is denoted by I, a vector or a matrix containing only zeros by
0. E{.} denotes the expectation operator. The Frobenius norm and the trace
of a matrix are denoted by ‖.‖F and tr{.}, respectively. diag(A ) zeros the off-
diagonal elements of A and

off(A ) , A − diag(A ) (5)

zeros the diagonal elements of A. The extension for polynomial matrices is de-
fined straightforwardly as off(A(z) ) , A(z) − diag(A(z) ) =

∑

n off(An )z−n.
Linear convolution between two sequences is denoted by ∗. Furthermore, we
define

A†(z) , AH(1/z∗) =
∑

n
AH

n z+n . (6)

Signals We use the following notation: xm(t) denotes the value of the signal
xm at discrete time t and xm , {xm(t)} denotes the time series of signal xm.
Furthermore, we define x(t) , (x1(1), . . . , xM (t))T and x , (x1, . . . , xM )T =
{x(t)}. The spatiotemporal correlation matrix between two signal vectors u and
x, and the corresponding z-transform of the correlation sequence are defined as

Rux(τ ; t) , E
{

u(t)xH (t − τ)
}

(7)

Rux(z; t) ,
∑∞

τ=−∞
Rux(τ ; t)z−τ , (8)

respectively. For stationary signals we have Rux(τ ; t) = Rux(τ) and, hence,
Rux(z; t)=Rux(z).

Frobenius norm In the following we, will make use of some concepts from
functional analysis [1]: Let M be the inner product space of complex matrixes.
Given two matrices A and B with A,B ∈ M, we define the scalar product of
two matrices as 〈A,B〉 , tr{ABH}. The induced norm is equivalent to the
Frobenius norm, i.e. ‖A‖F ,

√

〈A,A〉. Norms provide a convenient way to
measure a distance between two matrices, as they induce a metric defined as
d(A,B) , ‖A−B‖F .



Frobenius norm for polynomial matrices We can extend the definition of
the Frobenius norm to polynomial matrices. Let P be the inner product space of
complex polynomial matrixes. Let A(z) ,

∑

n Anz−n and B(z) ,
∑

n Bnz−n

be two matrix polynomials or Laurent series, i.e., their coefficients are com-
plex matrices. If A(z) or B(z) have finite energy, i.e.,

∑

n ‖An‖
2
F < ∞ or

∑

n ‖Bn‖
2
F < ∞, we can define the following inner product

〈A(z),B(z)〉F ,
∑

n
〈An,Bn〉 =

∑

n
tr{An BH

n } . (9)

The inner product 〈., .〉F defines an induced norm on P given by

‖A(z)‖F ,

√

〈A(z),A(z)〉F =

√

∑

n
‖An‖2

F (10)

and a metric on P induced by the norm d(A(z),B(z)) , ‖A(z) −B(z)‖F . It
is not very difficult to show that the definitions of 〈., .〉F and ‖.‖F fulfill the
properties of scalar products and norms [1], respectively. The induced metric
d(A(z),B(z)) , ‖A(z) −B(z)‖F allows us to measure the “distance” between
two polynomial matrices A(z) and B(z). In our case, we will use d(., .) to measure
the distance between two spatiotemporal correlation matrices.

2 A joint-diagonalization approach

2.1 Correlation matrices

Stationary source signals Assuming that the source signals sm are stationary,
the input spatiotemporal correlation matrix Rxx(z) of the mixing process (2) is

Rxx(z) = A(z)Rss(z)A†(z) . (11)

The output correlation matrix Ruu(z) of the separation process (3) is

Ruu(z) = W(z)Rxx(z)W†(z) = W(z)A(z)Rss(z)A†(z)W†(z) . (12)

Extension to block-wise stationary source signals If we relax the sta-
tionary assumption and assume that the source signals are non-stationary, but
block-wise stationary, then Eq. (11) changes to

Rxx(z; tp) = A(z)Rss(z; tp)A
†(z) (13)

where tp denotes the center of the pth snapshot of Rss(z; tp) and Rxx(z; tp).
Since the output correlation matrix depends now also on tp, (12) becomes

Ruu(z; tp) = W(z)Rxx(z; tp)W
†(z) = W(z)A(z)Rss(z; tp)A

†(z)W†(z) (14)

assuming A(z) and W(z) are time-invariant. Since we assume that the source
signals sm are mutually uncorrelated for all t, Rss(z; tp) has a diagonal structure
for every snapshot. In the special case where all source signals are also white,
then Rss(z; tp) = Rss(0). However, we do not require that the source signals
need to be white.



2.2 Cost function

Non-blind cost function In the blind source separation setup, the source
signals sm are unknown. Let us assume for the moment that Rss(z; tp) is known
for P snapshots at tp (p=1..P ). In this case a possible cost function for the (non-
blind) source separation task is (recall that ‖Ruu −Rss ‖F =d(Ruu ,Rss))

J0(W(z)) ,

P
∑

p=1

J ′
0(tp) =

P
∑

p=1

∥

∥Ruu(z; tp) −Rss(z; tp)
∥

∥

2

F
(15)

=
∑

p

∥

∥W(z)Rxx(z; tp)W
†(z) −Rss(z; tp)

∥

∥

2

F
. (16)

which obviously has a global minimum for W(z) = A−1(z).

Blind cost function In the blind signal separation (BSS) problem we do not
know the true source correlation matrices Rss(z; tp). Hence, we need to replace

them by some estimates R̂ss(z; tp) in order to still use the cost function (15).
Since we assume that the source signals sm are mutually uncorrelated, we also
assume that Rss(z; tp) has a diagonal structure. Therefore a possible choice is

R̂ss(z; tp) = diag
(

Ruu(z; tp)
)

. (17)

With this choice, we pretend that the diagonal entries of Ruu(z; tp) coincide
with those of Rss(z; tp) and simply ignore the nonzero off-diagonal elements
of Ruu(z; tp). The estimate (17) is consistent with the assumption of Rss(z; tp)
having a diagonal structure. Inserting (17) into (15) yields the blind cost function

J1(W(z)) ,

P
∑

p=1

J ′
1(tp) ,

P
∑

p=1

∥

∥ off
(

Ruu(z; tp)
) ∥

∥

2

F
(18)

=
∑

p

∥

∥ off
(

W(z)Rxx(z; tp)W
†(z)

)
∥

∥

2

F
. (19)

The cost function (19) attains its global minimum for a polynomial matrix W(z)
which jointly diagonalizes all input correlation matrices Rxx(z; tp). Because of
our assumptions, the global minimum of (18) is, in fact, zero: Inserting (4)
into (14) gives Ruu(z; tp) = PD(z)Rss(z; tp)D

†(z)PT which has a diagonal
structure. In order to prevent the trivial solution W(z) ≡ 0, which obviously
minimizes (18) as well, we need to impose some additional constraints on W(z).

The optimization problem defined in (18) subject to some constraints, is re-
ferred to as a joint-diagonalization problem. In our case, we wish to find a polyno-
mial matrix W(z) that jointly diagonalizes all products W(z)Rxx(z; tp)W

†(z).
In fact, the cost function (18) can be seen, as the straightforward polynomial
extention of a cost function commonly used in blind source separation for the
instantaneous mixing case, see [2,3]. On the other hand, by setting z = ejω and
evaluating ω at discrete frequency bins ωi, (18) turns into a the cost function



used in [4, 5]. There the assumption has been made that the cost function in
each frequency bin can be decoupled from the other frequency bins and there-
fore treated separately. Algorithms which treat each bin separately seem to have
decent bin-wise convergence properties. Unfortunately, as it has been reported
in the literature, the bin-wise decoupling of the adaptation also leads to a bin-
wise permutation ambiguity of the separated source signals, which is commonly
known in the context of blind source separation as the permutation problem.

2.3 Iterative algorithm

Derivation of the gradient In order to minimize the cost function J1 we will
use a steepest-descent algorithm. To this end, we need to derive the gradient of
J1 with respect to the filter coefficients Wr. We reformulate (18) in a similar
way as carried out in [3]:

J1 =
∑

p

∥

∥Ruu(z; tp) − diag(Ruu(z; tp) )
∥

∥

2

F
(20)

=
∑

p

∥

∥Ruu(z; tp)
∥

∥

2

F
−

∑

p

∥

∥ diag(Ruu(z) )
∥

∥

2

F
, J

(a)
1 −J

(b)
1 . (21)

Hereby we exploited 〈Ruu(z; tp), diag(Ruu(z; tp) )〉
F

= ‖ diag(Ruu(z; tp) )‖
2
F

.
We derive the gradient for the two terms in (21) separately. By using the defi-
nition (10), we obtain after a few steps the two gradients

∇Wr
J

(a)
1 = 4

∑

p

∑

τ

Ruu(τ ; tp)Rux(r − τ ; tp) (22)

∇Wr
J

(b)
1 = 4

∑

p

∑

τ

diag(Ruu(τ ; tp) )Rux(r − τ ; tp) . (23)

By combining (22) and (23), we obtain the overall gradient

∇Wr
J1 = ∇Wr

J
(a)
1 −∇Wr

J
(b)
1

= 4
∑

p

∑

τ

off
(

Ruu(τ ; tp)
)

Rux(r − τ ; tp) . (24)

Update equation In the following, we consider only a finite interval, τ ∈
[−τe, τe ], of Ruu(τ ; tp) in the cost function (18). The slightly modified gradient
(24) is then used to obtain the following time-domain update equation

Wr[k + 1] = Wr[k] − 4µ

P
∑

p=1

τe
∑

τ=−τe

off
(

Ruu(τ ; tp)[k]
)

Rux(r − τ ; tp)[k] (25)

where [k] denotes the kth iteration and

Rux(τ ; tp)[k] =
∑

m

Wm[k]Rxx(τ − m; tp) (26)

Ruu(τ ; tp)[k] =
∑

m

∑

n

Wm[k]Rxx(τ − m + n; tp)W
H
n [k] . (27)
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Fig. 1. Impulse responses of the 2 × 4 demixing filter W(z) (left) and the 2 × 2
global system G(z)=W(z)A(z) (right) after convergence.

Constraints In order to prevent the algorithm of converging to the trivial
solution W(z) ≡ 0, additional constraints need to be imposed on {Wr} dur-
ing the adaptation. The most common ones are to constrain ‖W(z)‖F ≡ 1 or
diag(W(z) ) ≡ I (sometimes referred to as the minimum distortion principle [6]).

3 Efficient implementation in the frequency domain

In Fig. 2 we present an efficient implementation of the proposed joint-diagonal-
ization algorithm for the convolutive mixing case. The algorithm works also
for complex source signals and complex filter coefficients. Since (25), (26), and
(27) are multichannel convolutional sums, we can compute them efficiently in
the frequency domain by applying fast convolution techniques. Note that this
procedure does not change the underlying cost function or the time-domain
update equation if applied properly. The derivation and notation of the vectors
are based on the same concepts as described in [7, Chapter 3 & Appendix F].
Even though the proposed algorithm is a major contribution of this paper, a
detailed derivation is not possible at this point, due to lack of space.

4 Simulation example

To verify the performance of the proposed algorithm, we setup an artificial mix-
ing system with Ms = 2 source signals and Mx = 4 sensors. The mixing sys-
tem A(z) is extracted from real measured HRTFs (head-related transfer func-
tions) and have length Na = 100. The correlation matrices Rss(z; tp) of P = 3
snapshots are generated artificially to be diagonal matrices with diagonal el-
ements (Rss(z; tp))m,m = b(z; tp) b†(z; tp) where b(z; tp) are randomly chosen
filters of length 20. This setup simulates the case where the source signals are
non-stationary and non-white. The input correlation matrices are computed as
Rxx(z; tp)=A(z)Rss(z; tp)A

†(z). This artificial generation of {Rss(z; tp)} guar-
antees that the global minimum of J1 is, in fact, zero. The demixing system
W(z) is a 2 × 4 matrix where each filter has length 199, (Nw = 99). The im-
pulse responses of W(z) and G(z) after convergence are shown in Fig. 1. From



the vanishing off-diagonal impulse responses of G(z) it is clearly seen, that the
proposed algorithm can perform almost perfect signal separation. Fig. 1 also
indicates that the proposed algorithm does not suffer any permutation problem.

5 Conclusions

Many BSS algorithms for the convolutive mixing case are straightforward exten-
sions of an instantaneous-mixing-case algorithm in the sense that the chosen cost
function and corresponding update rule are applied independently in every fre-
quency bin. This approach usually causes a so-called permutation problem. Our
approach differs insofar that we define a single global cost function which penal-
izes all cross-correlations over all time-lags. Even though the update equation for
the demixing system is derived in the time domain, most of the computation is
carried out in the frequency domain. We would like to point out, that our main
motivation to go into frequency domain was because of computational efficiency,
similar to [8], and not to decouple the update equations, as done in [4, 5]. Con-
sequently, the proposed algorithm does not suffer from a so-called permutation
problem, likewise to related pure time-domain algorithms described in [6, 9, 10].
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FCONVBSS-JD

Definitions:

P̃N ,

2

4

IN+1 0 0

0 0C−2N−1 0

0 0 IN

3

5

w̃mn[k] , (wmn,0[k], . . . , wmn,Nw
[k], 0, . . . , 0, wmn,−Nw

[k], . . . , wmn,−1[k])T

Initialization (∀m, n, p):

w̃mn[0] :=

(

(1, 0, . . . , 0)T for m = n

(0, 0, . . . , 0)T for m 6= n

w̄mn[0] := FFT( w̃mn[0] )

r
(p)
xmxn

(τ ) := E{xm(tp) x
∗

n(tp − τ )} for τ ∈ {−τxx, . . . , τxx}

r̃
(p)
xmxn

:= (r(p)
xmxn

(0), . . . , r(p)
xmxn

(τxx), 0, . . . , 0, r
(p)
xmxn

(−τxx), . . . , r
(p)
xmxn

(−1))T

r̄
(p)
xmxn

:= FFT( r̃(p)
xmxn

)

For each loop k do (∀m, n, p):

r̄
(p)
umxn

[k] :=
XMx

l=1
w̄ml[k] � r̄

(p)
xlxn

r̄
(p)
umun

[k] :=
XMx

l=1
w̄

∗

nl[k] � r̄
(p)
umxl

[k]

r̃
(p)
umun

[k] := IFFT( r̄(p)
umun

[k] )

ẽ
(p)
mn[k] :=

(

0 for m = n

P̃τe
r̃
(p)
umun

[k] for m 6= n

ē
(p)
mn[k] := FFT( ẽ(p)

mn[k] )

∆w̄mn[k] :=
XP

p=1

XMu

l=1
ē
(p)
ml [k] � r̄

(p)
ulxn

[k]

w̄
′

mn[k + 1] :=

(

w̄mn[k] for m = n

w̄mn[k] − µ · ∆w̄mn[k] for m 6= n

w̄mn[k + 1] := FFT
“

P̃Nw
IFFT

`

w̄
′

mn[k + 1]
´

”

Fig. 2. FCONVBSS-JD : Frequency-domain implementation of CONVBSS-JD
All vectors have length C, which is also the FFT size. Since the linear con-
volutions are embedded in cyclic convolutions, the projection matrices P̃ are
necessary to extract only the linear-convolution part. In order to prevent circu-
lar wrap-around effects affecting the updates, the FFT size needs to be chosen
large enough. The notation and concept behind the arrangement of the vector
elements are taken from [7, Chapter 3 & Appendix F].


