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Abstract

We present an efficient algorithm for the blind signal setiaina
(BSS) problem with convolutive signal mixtures, as it ugual
appears in Acoustics, e.g., in the cocktail party problermc&
acoustical signals are typically non-stationary and nditay we
make use of these two statistical properties in the forraratf
the blind cost function. In order to achieve true signal sapa
tion, the algorithm aims at finding a single polynomial matri
the convolutive separation matrix, that jointly diagone$ a set
of measured spatiotemporal correlation matrices. Minimgizhe
cost function turns out to be mathematically equivalent toia-
volutive joint approximate diagonalization problem (CJAD

In order to increase the initial convergence rate, a Arniije |
search is incorporated into the update. The final algoritipm o
erates primarily in the frequency domain (fast convolutiech-
niques) even though the cost function and gradient are fiaten
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Figure 1: Setup of convolutive mixing / demixing system.

The objective of the blind-source-separation problemHerdon-
volutive mixing case is to find 3 (z) such that the global system
can be written as

G(z) = W(2) A(z) = PD(z) (4)

whereD(z) is a diagonal polynomial matrix an is a permu-

in the time domain. This approach reduces the computational tation matrix. In the following we assume thafy = Ms < My,

complexity and avoids the so-called permutation problem.

1 Introduction
1.1 Problem formulation
1.1.1 Signal mixing

The system setup is depicted in Fig. 4/s unknown mutually

uncorrelatedsource signals,, are filtered and mixed by an un-
known time-invariant finite-length causabnvolutive mixing sys-
tem AM>Ms & A 1Na resulting in My measurable sensor

and that the source signals and mixing system can be complex
valued. Depending oA (z), My, and Ms perfect separation is
possible for a finiteVy,.

1.2 Mathematical preliminaries

1.2.1 Basic notation

The notation used throughout this paper is the followingctyes
are written in lower case, matrices in upper case. Matrix and
vector transpose, complex conjugation and Hermitian frases

signalsz,,,. The source- and sensor-signals are stacked in vec- 5re denoted by)7, (.)*, and(.) 2 ((.)*)T, respectively. The

tors,s andx, respectively. For simplicity we neglect any additive
noise components. Hence, the convolutive mixing proceds-is
scribed ax = A * s where

x(1) = (Axs)(t) =3 - Ans(t—n) )
or, written in thez-domain,
x(z) & Zt x(t) 27" = A(2)s(2). )

1.1.2 Signal separation

The My sensor signals,, are mixed and filtered with a finite-
length non-causal convolutive separation sysféi/v<Mx 2
{Wn}fngw resulting in M, output signalsu,,. The separa-
tion process is described as=W x x=W x A x s, Or written
in the z-domain

u(z) = W(z)x(z) = W(2)A(z)s(z). 3)

sample index is denoted ly The identity matrix is denoted by

I, a vector or a matrix containing only zeros @y £{.} denotes

the expectation operator. The Frobenius norm and the trce o
a matrix are denoted by.|| . andtr{.}, respectively.diag( A )
zeros the off-diagonal elements Afand

off(A) 2 A —diag(A) (5)

zeros the diagonal elements &. The extension for poly-
nomial matrices is defined straightforwardly a&( A(z)) =
A(z) — diag(A(z)) = >, off(A,)z~". Linear convolu-
tion between two sequences is denoted«byFurthermore, let
A(z) £ 3 A,z"". Then we define

AT(z) 2 AT (1/2%) = Zn Al (6)

whereA(z) is said to be the paraconjugateAf z), see [1].



1.2.2 Inner products and induced norms

A commonly choselinner productbetween two matriceA and
Bis (A,B) 2 tr{AB}. The correspondininduced norrmis
theFrobenius normj|A||r £ /(A A).

The Frobenius norm can also be extended to polynomial ma- (z1(1), ..

trices. LetA(z) £ 3 A,z "andB(z) £ Y, Bnz " betwo
polynomial matrices witfiinite energyi.e.,>", ||A.||% < oo or
>, IBxll% < co. Then arinner productcan be defined as [2, 3]

(AG)B(), 23 (AnBa) =3 (A, B} ()

The induced norm becomes

IAG)5 2 \(AG) A=/ IAdE ©

which is the extention of the Frobenius norm to polynomiat ma

trices. Norms provide a convenient way to measure a distance

between two matrices or polynomial matrices, as they induce

1.2.4 Signals and spatiotemporal correlations

We use the following notation:z,,(¢) denotes the value of
the signalz,, at discrete timg andz,, £ {z.,(t)} denotes
the time series of signat,,. Furthermore, we defing(t) £
S, ()T andx £ (1, ..., 20,)T = {x(t)}. The
spatiotemporal correlation matrix between two signal eect
andx, and the correspondingtransform of the correlation se-

quence are defined as

Rux(7;t) £ E{u(t) x7(t — )} (13)
Rux() 2" Rux(rit)z 7, (14)

respectively. For stationary signals we h&gx (7;t) = Rux (1)
and, henceRux (z;t) = Rux (2).

2 Ajoint-diagonalization approach
2.1 Blind cost function

metric[4]. For example, we can measure the “distance” between a \ye|l-designed cost function is essential in optimizatjmob-

A

two polynomial matricesA (z) andB(z) asd(A(z),B(z)) =
|A(z) — B(2)|| - In our case, we will usel(.,.) to mea-
sure the distance between two spatiotemporal correlatian m
trices. Interestingly, the paraconjugate operator define(b)
is the Hilbert-adjoint operator [4] for polynomial matrigei.e.,

(T(2) A(2),B(2)) » = (A(2) , T'(2) B(2)) 1.

We can also define an inner product for the case where

A(z) andB(z) are transformed into the frequency domain, i.e.,
A(e’?) andB(e’*), respectively, as

i ™
Foo2m J_.

1>

<A(ej“’), B(ej”)> <A(6J'W), B(ej”)> dw (9)

™

- % [ {A)BY ().
(10)

1.2.3 First-order Taylor series approximation in matrix-
polynomial form

Taylor-series approximation is an important tool in optiation

problems. In multivariate optimization the parametersuesgally

arranged in vector form. However, in some applicationshag
the joint diagonalization problem, the natural arrangemoéthe

parameters is in matrix form [5]. For this case, an elegamn fof

the Taylor series approximation is given by Manton [6]

TJ(W +36Z) = J(W) + 6 Re{(Dw, Z)} + O(6°) (11)

lem. In our case, we choose the saltied cost functioras was
used in [3]:

Ti(W(2) 2 3| off (Ruu(z:8)) |2 (15)

=7 off (W(2)Ruexe (2 t,) W' (2)) || . (16)

where

Rox (23 tp) = A(2)Ras (25 15) AT (2) a7

is the spatiotemporal correlation matrix of the sensor agyat
time t, andt, denotes the center of the¢h snapshat The cost
function (16) takes” > 1 snapshots into account as we assume
that the source signals, are non-stationary. To be more precise,
we assume that the source signals are stationary withirintiee t
frame of a single snapshot, but are considered non-stayiona
over the time-frame of alP snapshots. Furthermore, as we as-
sume that the source signals are mutually uncorrelatedlifor a
t, Rss(z;tp) is modeled to have diagonal structure for every

snapshot. We do not require that the source signals need to be

white. The unknown mixing syster (z) is assumed to be time-
invariant, henceW (z) is chosen to be time-invariant as well.

The cost function (16) is designed to separate, but not decon
volve the unknown source signals. Furthermore, an optioiat s
tion W(z), which minimizes (16), does not suffer the so-called

permutation problem, as opposed to other commonly used cost
functions for the same problem, e.g., [7] (See [8] for mor&ite
on how to avoid the permutation problem). In order to prevent

whereDw denotes the derivative or gradient of the cost function
J atW and(Dw, Z) £ tr{Z"Dw}.

For the convolutive joint diagonalization problem, theuwat
ral arrangement of the parameters is given in polynomiatima
form, i.e., W(z). In this case, we can extend the formulation of
the Taylor series in (11) to

TJ(W(z)+0Z(2)) =~ TJ(W(z)) +0Re {(DW(Z), Z(z))(}].;)

where( ., .) - is defined in (7) andw (z) is referred to as the
gradient of 7 atW(z).

the trivial solutionW (z) = 0, which obviously minimizes (16),
we need to impose some additional constraint3¥(x), see [3]
for more details. The optimization problem defined in (18)-su
ject to some constraints, is referred to gsiat-diagonalization
problem as we wish to find a single polynomial mati¥ (z)
that jointly diagonalizes all product®V (z) R (2; £, )W (2).
In practical applications usually some of the assumptioas/a
olated, such that the optimu (z) will only approximately
jointly diagonalize all products.



2.2 Gradient and update equation

Referring to the Taylor series representation (12), thdigra of
the cost function (16) is

Nw
Dw(z)= Y Vw,/(W(2))z "

(18)
r=— Ny
where P o
Vw,J1 = 42 Z off (Ruu(7;tp)) Rux (r — 73 tp)
p=1T=—T¢
(19)

is the gradient of71 at W(z) with respect toW,., see [3]. Fur-
thermore,

Rux (75tp) = Y W Racx (7 — mjty) (20)

Ruu (751)

W R (T —m + m;t,) WE . (21)
>

m

Note that we only included a finite interval € [—7e, 7] in the
update (19). The update equation of the corresponding eseep
descent algorithm is

W(2)[k +1] = W(2)[k] — pDw (2)[¥] (22)

wherey denotes the step size of the update.
2.3 Modified update equation

In [3] the update (22) was used with a constant step gizén
order to prevent the algorithm to become unstable for eviguty s
ation, the step sizg needed to be chosen fairly small. Whether
the cost function7; is poorly conditioned or not depends primar-
ily on the power and spatiotemporal correlation properiethe
input signals in all snapshots. Therefore, we aim at finding a
update strategy that makes the convergence behavior nmistro
against the input signal propertiésTo this end, we make a slight
modification to the update equation (22), namely
W(2)[k+ 1] = W(2)[k] + px S(2)[k] . (23)

The difference between (22) and (23) is mainly, that the tgpda
does not necessarily need to go in the direction of the negati
gradient and, more importantly, that we can choose a differe
step size in every iteration. The motivation will become app
ent once we introduce the concept of line-search methodedn S
tion 3.

Note that (22) and (23) correspond, in fact, to a time-domain
update equation, as the time-domain filter coefficidits are up-
dated, i.e. W, [k + 1] = W, [k] + ur Sr[k] for r € [— Nw, Nw].

3 Line-search methods
3.1 General optimization techniques

Typically quadratic cost functions are preferred for a giepti-
mization problem for several reasons. However, this is hete

1This is somehow analog to an LMS algorithm that is modified itbee an
NLMS algorithm (to make the convergence independent ofripatisignal power),
or even an RLS algorithm (to also make the convergence imdigpe of the input
signal correlation properties).

the case as the free parameters in the cost function (16)thee
elements ofW (z), appear up to the fourth power. In previous
work on convolutive BSS, most algorithms use a steepestetiés
method with a constant step sizdor every update. The step size
1 needs to be chosen small enough, such that the algorithm does
not diverge for any type of input signal, but should also be-ch
sen large enough, such that still a decent convergenceanteec
achieved. The same is true for stochastic algorithms, ssithea
LMS or NLMS, which are commonly used in non-blind adaptive
signal processing, e.g., adaptive beamforming or echoetlanc
tion.

Taking a closer look at the cost function (16), we discover,
that once the spatiotemporal correlation matri€®s (z;tp)}
are estimated, finding a minimum of (16) becomes a pure 10#-li
optimization problem. In order to find a fast converging algo
rithm, we should make use of existing (non-stochastic)noiati-
tion techniques. Applying a full Newton method seems to be
infeasible nowadays, as the dimension of the Hessian become
extremely large. Moreover, a Newton method would show its
largest benefit over a steepest-descent method in thetyiciha
local minima, as the cost function becomes there approriyat
quadratic.

Incorporating dine-search methoihto the optimization algo-
rithm seems to be more promising, as this does not increase th
computational complexity in the same order as a Newton naetho
does. Moreover, a line-search method can improve thelindia
vergence in an ill-conditioned situation considerably paned
to a fixed-step-size method. Usually inexact line-searcthme
ods are used in practice, whereas exact line-search me#ineds
mostly used just for a convergence analysis. In the follgyine
will use an Armijo-line-search method [9] in order to impeathe
convergence rate of the algorithm.

3.2 Constraint optimization

As already mentioned in Section 2.1, we need to cons¥¥ifx)
somehow to prevent the algorithm of converging to the trista
lution W(z) = 0. We will choose to constraidiag( W (z) )
I, which is sometimes referred to as thenimum distortion prin-
ciple [10]. To this end, we will initializeW (z)[0] = I and then
simply do not update the diagonal filters¥f(z). This can also
be achieved by always choosing a search direction who'sdiag
nal filters are set to zero. In the following, we will choose th
search directiorS(z) in the kth iteration as

S(z)[k] = — off (Dw (2)[k]) (24)

which corresponds to a projection operation of the negafiae
dient.

3.3 Armijo line search

Among the different inexact line search methods, we deaide t
use the Armijo line-search method [9]. The Armijo line-sgrar
method will give a reasonable step sjzgin every iteration that
will neither be too large (instability) or very small (slowmver-
gence). Furthermore, if at theth iteration the search direction
Sk (z) points along a feasible direction, then the Armijo line-
search method will find ai;, such that the cost function will



Armijo line-search routine

Input parameters: Wi, Sk, Dwy,
Output parameters: Lk

Constants: Ho, 15 7Y, €
Early termination criteria: p ||Sk|| < €
Initialization: = o

if Re{(Dwk,Sk>} >0
theny := —p

while J (W) — J (Wi +~7" 1 S)
> =1y~ 1 Re{(Dwy, Sk)}
dop:=~"p
while J (W) — T (Wi + 11 Sk)
< —npu Re{(Dwy, Sk)}
do p:=7-p

return pp = p

Figure 2: Armijo line search method for the matrix form. Here
Il £ (.,.)/? denotes the induced norm. The extension to the
polynomial-matrix form is straightforward by replacingetin-

ner produck(. ,.) with (., .) ~. In case the search directi), is
pointing in a ascent directiomy. will become negative, such that
the resulting update, Sy will be in a decent direction. The inner
product needs to be computed only once within an Armijo line
search.

decrease, i.eJ (Wk(2) + pr Sk(2)) < J(Wk(2)). In Ap-
pendix A the Armijo rule is described in vector, matrix, aralyp
nomial matrix form. A routine to compute the Armijo step size
for an arhitrary search direction is given in Fig. 2.

4 Efficient implementation in the frequency domain

The proposed algorithm, including the Armijo-line search
method can be implemented efficiently in the frequency damai
To this end, we compute the linear (multichannel) convohai
via fast convolution techniques, where the linear convohst
are embedded in circular convolutions. The circular caniohs
themselves are computed efficiently via FFT / IFFT and elémen
wise multiplications in the DFT domain. This strategy, ibpr
erly applied, does not change the original cost functionduas
is modify the direction of the gradient, even though we tfams
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Figure 4: Impulse responses of thex 4 demixing filterW (z)

The proposed algorithm differs primarely from the algarith
in [3] by the additional line search incorporated into ugdstiat-
egy. Note that we can also perform the Armijo line search orbth
in the frequency domain, under two conditions: (i) the sealie
rection in the frequency domain is derived from the time-dom
gradient, and (i) the line search is carried out in all frexcies
jointly (the samey for all frequency bins). Generally speaking,
the inner productg. ,.) - can also be computed in the discrete
Fourier domain, as long as the DFT lengthis chosen large
enough to avoid circular wrap around effects.

We also make use of another simplification. Since we
choose the search directi®),(z) according to (24), we have
(Dwi(2),8k(2)) = _HSI@(Z)Hi:- Here we made use that the
inner product between a diagonal matrix and an off-diagorel
trix is always zero, i.e.{diag(Dwy(z)),Sk(z)) = 0. The
norm ||Sk(z)|\§__ can also be computed in the discrete Fourier do-
main, in the same way afk| computes the norm of (W (z)).
Moreover, ||Si(2)|| » can also serve to evaluate the termination
condition of the Armijo line search, see Fig. 2.

The full implementation of the algorithm is not completely

some of the signals into the frequency domain. Hence the final described in Fig. 7. Primarily the steps of the Armijo lineusd

algorithm will not suffer any permutation problem. The pospd
algorithm is given in Fig. 7 and works also for complex source
signals and complex filter coefficients. Furthermdvé(z) can

be a non-square matrid{, < My). The notation of the vectors

method in Fig. 2 are missing. However, the computationgisste
of how to compute7 (W (z) + puS(z)) are exactly the same as
to compute7 (Wyx(z)). The only difference is tha# .. [k] is
replaced byw ., [k] + 1 - Smn[k] when computing/[k]. The

and the derivation are based on the same concepts as ddscribelFFT / FFT operation carried out to obtadn,,, [k] is required to

in [2, Chapter 3 & Appendix F].

prevent that the filter length dV (z) grows.
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Figure 5: Impulse responses of thex 2 global systenG(z)

5 Simulation example

To verify the performance of the proposed algorithm, we getu
an artificial mixing system withM/s = 2 source signals and
My = 4 sensors. The mixing systef(z) is extracted from
real measured HRTFs (head-related transfer functionshane
length Na = 100. The correlation matriceRss (z;tp) of P =3
shapshots are generated artificially to be diagonal matrigth
diagonal element$Ress (2;t,))m.m = b(z;tp) b1 (2;t,) Where
b(z;t,) are randomly chosen filters of length 20. This setup
simulates the case where the source signals are non-station
and non-white. The input correlation matrices are computed as
Rax (2;tp) = A(2)Res (z;t,)AT(2). This artificial generation
of {Rss (z;tp) } guarantees that the global minimumd@f is, in
fact, zero. The demixing systeN (z) is a2 x 4 matrix where
each filter has length 199\, = 99). The impulse responses of
W (z) andG(z) after convergence are shown in Fig. 4 and Fig. 5.
From the vanishing off-diagonal impulse response&of) it is
clearly seen, that the proposed algorithm can perform alpers
fect signal separation. Fig. 5 also indicates that the sepalgo-
rithm does not suffer any permutation problem. The converge
behavior is shown in Fig. 6. It is clearly seen, that inclgdihe
Armijo line search into the update can improve the convergan
behavior considerably.

6 Conclusions

The presented algorithm is an extended version of the dhgori
in [3]. In addition to the previous algorithm, we added an Aom
line search into the update equation. In contrast to Newtethm
ods, which are very effective for quadratic cost functionsahe
vicinity of a local minimum, the Armijo line search methodpe
also to improve the initial convergence. This statemensfee
cially true for our case, as the optimization parametergappp
to the fourth power in the cost function. Moreover, it turng o
that the new algorithm is also more robust against ill coodéd
problems, and no additional normalization is required.
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Figure 6: Comparison between (i) fixed step size, (ii) withnjjo
line search, and (iii) fixed step size for the first 50 itenasicthen
with Armijo line search. The curves are for a typical singlalt
(top) blind cost function7 (W (z)[k]), (middle) interchannel in-
terference ICI[K], and (bottom) step size.

with non-unitary matrices. In order to apply an Armijo lireasch
method to the convolutive JAD problem, we needed to extead th
Armijo rule to the case of polynomial matrices.

Similarly to the previous algorithm, the cost function is-fo
mulated in the time domain, and also the derivation the gradi
By computing the linear convolutions via fast convoluti@th-
nigues, most of the computation is carried out in the frequen
domain. In doing so, we can elegantly avoid the so called perm
tation problem, which appears, if the cost function is folated
directly in the frequency domain on a bin-by-bin basis.
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A Armijo Rule
A.1 Armijo rule in vector form

The Armijo rule is used in a line-search problem to find a reaso
able step-size:, see [9]. For fixed scalafs < po, 0 < 7 < 1,
and0 < v < 1, the Armijo rule chooses at theh iteration the
step sizeur, = po " wherem is the first nonnegative integer
that fulfills

TJ(wi) — T (Wi +poy" sk) > —npoy" Re{(dwk,sk)}
(25)

The search direction and the gradientbfat w;, are denoted as
s, anddwy, respectively, anddw,sx) = s dwx. Note that
J (wy) is areal function, whereas tlve, can be complex.

A.2 Armijo rule in matrix form

Similarly to the vector form, Armijo rule chooses at thih iter-
ation the step sizgr = po~y™ wherem is the first nonnegative
integer that fulfills

T(Wi) =T (Wi + poy™ Sk) > —npoy™ Re{(Dwg, Sk)}
(26)

The search direction and the gradientbfit W, are denoted as
Si andDw, respectively, andDw, Si) £ tr{S7 Dw,}.

A.3 Armijo rule in polynomial-matrix form

Similarly to the vector and matrix form, Armijo rule choosas
the kth iteration the step sizer, = po~y™ wherem is the first
nonnegative integer that fulfills

T (Wk(2)) = T (Wk(2) + o™ Sk(z))
> —npoy" Re{ (Dwi(2),8:(2)) -} (27)

The search direction and the gradientbfit W, (=) are denoted
asSi(z) andDw 4 (z), respectively, and the inner product.) -
is defined in (7).

FCJD-ALS
Definitions:
~ Iny1 O 0
Py £ 0 Oc_a2n—1 O
0 0 In
Wonn[k] £ (Wmn,0[E], ..., Wmn, N [K],0, ...,
0, Wmn,— Ny [k]7 ceey Wmn,—1 [kf])T

Initialization (v m, n, p):
T —
T 0] = (1707...,0)T form=n
(0,0,...,0) form #n
Winn[0] := FFT(Wpmn[0])

Precompute spatiotemporal input correlations, n, p):

Tézjizn (7_) — E{l’m(tp) :c;(tp — T)} for re {_TXX7 “ Txx}
f:(cl;)l:cn = (T:(cziy)wcn (0)7 sy Ta(vz;)lzn (Txx)v 0,0y
077_(1)) (_TXX)7 oo 7T£7:1)LG (_1))T

TmTn
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Figure 7: FCJD-ALS: Fast convolutive joint diagonalizatiwith
Armijo line search. All vectors have length C, which is theTFF
size. In order to prevent circular wrap-around effects ctiffe

the updates, the FFT size needs to be chosen large enough. The
notation and the concept behind the arrangement of the vecto
elements are taken from [2, Chapter 3 & Appendix F].



