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Abstract

We present an efficient algorithm for the blind signal separation
(BSS) problem with convolutive signal mixtures, as it usually
appears in Acoustics, e.g., in the cocktail party problem. Since
acoustical signals are typically non-stationary and non-white, we
make use of these two statistical properties in the formulation of
the blind cost function. In order to achieve true signal separa-
tion, the algorithm aims at finding a single polynomial matrix,
the convolutive separation matrix, that jointly diagonalizes a set
of measured spatiotemporal correlation matrices. Minimizing the
cost function turns out to be mathematically equivalent to acon-
volutive joint approximate diagonalization problem (CJAD).

In order to increase the initial convergence rate, a Armijo line
search is incorporated into the update. The final algorithm op-
erates primarily in the frequency domain (fast convolutiontech-
niques) even though the cost function and gradient are formulated
in the time domain. This approach reduces the computational
complexity and avoids the so-called permutation problem.

1 Introduction

1.1 Problem formulation

1.1.1 Signal mixing

The system setup is depicted in Fig. 1.Ms unknown mutually
uncorrelatedsource signalssm are filtered and mixed by an un-
known time-invariant finite-length causalconvolutive mixing sys-
temA

Mx×Ms , {An}
Na
n=0 resulting inMx measurable sensor

signalsxm. The source- and sensor-signals are stacked in vec-
tors,s andx, respectively. For simplicity we neglect any additive
noise components. Hence, the convolutive mixing process isde-
scribed asx=A ∗ s where

x(t) = (A ∗ s)(t) =
XNa

n=0
An s(t − n) (1)

or, written in thez-domain,

x(z) ,
X

t
x(t) z−t = A(z) s(z) . (2)

1.1.2 Signal separation

The Mx sensor signalsxm are mixed and filtered with a finite-
length non-causal convolutive separation systemW

Mu×Mx ,

{Wn}
Nw
n=−Nw

resulting inMu output signalsum. The separa-
tion process is described asu=W ∗ x=W ∗ A ∗ s, or written
in thez-domain

u(z) = W(z)x(z) = W(z)A(z) s(z) . (3)

s x u

Ms Mx Mu

W(z)A(z)

Figure 1: Setup of convolutive mixing / demixing system.

The objective of the blind-source-separation problem for the con-
volutive mixing case is to find aW(z) such that the global system
can be written as

G(z) = W(z)A(z) = PD(z) (4)

whereD(z) is a diagonal polynomial matrix andP is a permu-
tation matrix. In the following we assume thatMu = Ms ≤ Mx,
and that the source signals and mixing system can be complex
valued. Depending onA(z), Mx, andMs perfect separation is
possible for a finiteNw.

1.2 Mathematical preliminaries

1.2.1 Basic notation

The notation used throughout this paper is the following: Vectors
are written in lower case, matrices in upper case. Matrix and
vector transpose, complex conjugation and Hermitian transpose
are denoted by(.)T , (.)∗, and(.)H , ((.)∗)T , respectively. The
sample index is denoted byt. The identity matrix is denoted by
I, a vector or a matrix containing only zeros by0. E{.} denotes
the expectation operator. The Frobenius norm and the trace of
a matrix are denoted by‖.‖F andtr{.}, respectively.diag(A )
zeros the off-diagonal elements ofA and

off(A ) , A − diag(A ) (5)

zeros the diagonal elements ofA. The extension for poly-
nomial matrices is defined straightforwardly asoff(A(z) ) ,

A(z) − diag(A(z) ) =
P

n off(An )z−n. Linear convolu-
tion between two sequences is denoted by∗. Furthermore, let
A(z) ,

P

n Anz−n. Then we define

A
†(z) , A

H(1/z∗) =
X

n
A

H
n z+n . (6)

whereA†(z) is said to be the paraconjugate ofA(z), see [1].



1.2.2 Inner products and induced norms

A commonly choseninner productbetween two matricesA and
B is 〈A,B〉 , tr{AB

H}. The correspondinginduced normis
theFrobenius norm‖A‖F ,

p

〈A,A〉.
The Frobenius norm can also be extended to polynomial ma-

trices. LetA(z) ,
P

n Anz−n andB(z) ,
P

n Bnz−n be two
polynomial matrices withfinite energy, i.e.,

P

n ‖An‖
2
F < ∞ or

P

n ‖Bn‖
2
F < ∞. Then aninner productcan be defined as [2,3]

〈A(z),B(z)〉
F

,
X

n
〈An,Bn〉 =

X

n
tr{An B

H
n } . (7)

The induced norm becomes

‖A(z)‖
F

,

q

〈A(z),A(z)〉
F

=

r

X

n
‖An‖2

F (8)

which is the extention of the Frobenius norm to polynomial ma-
trices. Norms provide a convenient way to measure a distance
between two matrices or polynomial matrices, as they inducea
metric [4]. For example, we can measure the “distance” between
two polynomial matricesA(z) andB(z) asd(A(z),B(z)) ,

‖A(z) − B(z)‖
F

. In our case, we will used(., .) to mea-
sure the distance between two spatiotemporal correlation ma-
trices. Interestingly, the paraconjugate operator definedin (6)
is the Hilbert-adjoint operator [4] for polynomial matrices, i.e.,
〈T(z)A(z) ,B(z)〉

F
=

˙

A(z) , T†(z)B(z)
¸

F
.

We can also define an inner product for the case where
A(z) andB(z) are transformed into the frequency domain, i.e.,
A(ejω) andB(ejω), respectively, as

D

A(ejω),B(ejω)
E

F
,

1

2π

Z π

−π

D

A(ejω),B(ejω)
E

dω (9)

=
1

2π

Z π

−π

tr{A(ejω)BH(ejω)}dω .

(10)

1.2.3 First-order Taylor series approximation in matrix-
polynomial form

Taylor-series approximation is an important tool in optimization
problems. In multivariate optimization the parameters areusually
arranged in vector form. However, in some applications, such as
the joint diagonalization problem, the natural arrangement of the
parameters is in matrix form [5]. For this case, an elegant form of
the Taylor series approximation is given by Manton [6]

J (W + δ Z) = J (W) + δ Re{〈DW,Z〉} + O(δ2) (11)

whereDW denotes the derivative or gradient of the cost function
J atW and〈DW,Z〉 , tr{ZH

DW}.
For the convolutive joint diagonalization problem, the natu-

ral arrangement of the parameters is given in polynomial-matrix
form, i.e.,W(z). In this case, we can extend the formulation of
the Taylor series in (11) to

J (W(z) + δ Z(z)) ≈ J (W(z)) + δ Re
˘

〈DW(z),Z(z)〉
F

¯

(12)

where〈 ., .〉
F

is defined in (7) andDW(z) is referred to as the
gradient ofJ atW(z).

1.2.4 Signals and spatiotemporal correlations

We use the following notation:xm(t) denotes the value of
the signalxm at discrete timet and xm , {xm(t)} denotes
the time series of signalxm. Furthermore, we definex(t) ,

(x1(1), . . . , xMx
(t))T andx , (x1, . . . , xMx

)T = {x(t)}. The
spatiotemporal correlation matrix between two signal vectors u

andx, and the correspondingz-transform of the correlation se-
quence are defined as

Rux(τ ; t) , E
˘

u(t)xH(t − τ )
¯

(13)

Rux(z; t) ,
X∞

τ=−∞
Rux(τ ; t)z−τ , (14)

respectively. For stationary signals we haveRux(τ ; t)=Rux(τ )
and, hence,Rux (z; t)=Rux(z).

2 A joint-diagonalization approach

2.1 Blind cost function

A well-designed cost function is essential in optimizationprob-
lem. In our case, we choose the sameblind cost functionas was
used in [3]:

J1(W(z)) ,

P
X

p=1

‚

‚ off
`

Ruu(z; tp)
´ ‚

‚

2

F
(15)

=
X

p

‚

‚ off
`

W(z)Rxx (z; tp)W
†(z)

´ ‚

‚

2

F
. (16)

where

Rxx(z; tp) = A(z)Rss(z; tp)A
†(z) (17)

is the spatiotemporal correlation matrix of the sensor signals at
time tp andtp denotes the center of thepth snapshot. The cost
function (16) takesP > 1 snapshots into account as we assume
that the source signalssm are non-stationary. To be more precise,
we assume that the source signals are stationary within the time-
frame of a single snapshot, but are considered non-stationary
over the time-frame of allP snapshots. Furthermore, as we as-
sume that the source signals are mutually uncorrelated for all
t, Rss(z; tp) is modeled to have diagonal structure for every
snapshot. We do not require that the source signals need to be
white. The unknown mixing systemA(z) is assumed to be time-
invariant, hence,W(z) is chosen to be time-invariant as well.

The cost function (16) is designed to separate, but not decon-
volve the unknown source signals. Furthermore, an optimal solu-
tion W(z), which minimizes (16), does not suffer the so-called
permutation problem, as opposed to other commonly used cost
functions for the same problem, e.g., [7] (See [8] for more details
on how to avoid the permutation problem). In order to prevent
the trivial solutionW(z) ≡ 0, which obviously minimizes (16),
we need to impose some additional constraints onW(z), see [3]
for more details. The optimization problem defined in (16) sub-
ject to some constraints, is referred to as ajoint-diagonalization
problem, as we wish to find a single polynomial matrixW(z)
that jointly diagonalizes all productsW(z)Rxx (z; tp)W

†(z).
In practical applications usually some of the assumptions are vi-
olated, such that the optimumW(z) will only approximately
jointly diagonalize all products.



2.2 Gradient and update equation

Referring to the Taylor series representation (12), the gradient of
the cost function (16) is

DW(z) =

Nw
X

r=−Nw

∇Wr
J1

`

W(z)
´

z−r (18)

where

∇Wr
J1 = 4

P
X

p=1

τe
X

τ=−τe

off
`

Ruu(τ ; tp)
´

Rux (r − τ ; tp)

(19)

is the gradient ofJ1 at W(z) with respect toWr, see [3]. Fur-
thermore,

Rux(τ ; tp) =
X

m

Wm Rxx (τ − m; tp) (20)

Ruu(τ ; tp) =
X

m

X

n

Wm Rxx(τ − m + n; tp)W
H
n . (21)

Note that we only included a finite intervalτ ∈ [−τe, τe ] in the
update (19). The update equation of the corresponding steepest
descent algorithm is

W(z)[k + 1] = W(z)[k] − µDW(z)[k] (22)

whereµ denotes the step size of the update.

2.3 Modified update equation

In [3] the update (22) was used with a constant step sizeµ. In
order to prevent the algorithm to become unstable for every situ-
ation, the step sizeµ needed to be chosen fairly small. Whether
the cost functionJ1 is poorly conditioned or not depends primar-
ily on the power and spatiotemporal correlation propertiesof the
input signals in all snapshots. Therefore, we aim at finding an
update strategy that makes the convergence behavior more robust
against the input signal properties.1 To this end, we make a slight
modification to the update equation (22), namely

W(z)[k + 1] = W(z)[k] + µk S(z)[k] . (23)

The difference between (22) and (23) is mainly, that the update
does not necessarily need to go in the direction of the negative
gradient and, more importantly, that we can choose a different
step size in every iteration. The motivation will become appar-
ent once we introduce the concept of line-search methods in Sec-
tion 3.

Note that (22) and (23) correspond, in fact, to a time-domain
update equation, as the time-domain filter coefficientsWr are up-
dated, i.e.,Wr[k +1] = Wr[k]+µk Sr[k] for r ∈ [−Nw, Nw ].

3 Line-search methods

3.1 General optimization techniques

Typically quadratic cost functions are preferred for a given opti-
mization problem for several reasons. However, this is herenot

1This is somehow analog to an LMS algorithm that is modified to either an
NLMS algorithm (to make the convergence independent of the input signal power),
or even an RLS algorithm (to also make the convergence independent of the input
signal correlation properties).

the case as the free parameters in the cost function (16), i.e., the
elements ofW(z), appear up to the fourth power. In previous
work on convolutive BSS, most algorithms use a steepest-descent
method with a constant step sizeµ for every update. The step size
µ needs to be chosen small enough, such that the algorithm does
not diverge for any type of input signal, but should also be cho-
sen large enough, such that still a decent convergence rate can be
achieved. The same is true for stochastic algorithms, such as the
LMS or NLMS, which are commonly used in non-blind adaptive
signal processing, e.g., adaptive beamforming or echo cancella-
tion.

Taking a closer look at the cost function (16), we discover,
that once the spatiotemporal correlation matrices{Rxx (z; tp)}
are estimated, finding a minimum of (16) becomes a pure off-line
optimization problem. In order to find a fast converging algo-
rithm, we should make use of existing (non-stochastic) optimiza-
tion techniques. Applying a full Newton method seems to be
infeasible nowadays, as the dimension of the Hessian becomes
extremely large. Moreover, a Newton method would show its
largest benefit over a steepest-descent method in the vicinity of a
local minima, as the cost function becomes there approximately
quadratic.

Incorporating aline-search methodinto the optimization algo-
rithm seems to be more promising, as this does not increase the
computational complexity in the same order as a Newton method
does. Moreover, a line-search method can improve the initial con-
vergence in an ill-conditioned situation considerably compared
to a fixed-step-size method. Usually inexact line-search meth-
ods are used in practice, whereas exact line-search methodsare
mostly used just for a convergence analysis. In the following, we
will use an Armijo-line-search method [9] in order to improve the
convergence rate of the algorithm.

3.2 Constraint optimization

As already mentioned in Section 2.1, we need to constrainW(z)
somehow to prevent the algorithm of converging to the trivial so-
lution W(z) ≡ 0. We will choose to constraindiag(W(z) ) ≡
I, which is sometimes referred to as theminimum distortion prin-
ciple [10]. To this end, we will initializeW(z)[0] = I and then
simply do not update the diagonal filters ofW(z). This can also
be achieved by always choosing a search direction who’s diago-
nal filters are set to zero. In the following, we will choose the
search directionS(z) in thekth iteration as

S(z)[k] = − off
`

DW(z)[k]
´

(24)

which corresponds to a projection operation of the negativegra-
dient.

3.3 Armijo line search

Among the different inexact line search methods, we decide to
use the Armijo line-search method [9]. The Armijo line-search
method will give a reasonable step sizeµk in every iteration that
will neither be too large (instability) or very small (slow conver-
gence). Furthermore, if at thekth iteration the search direction
Sk(z) points along a feasible direction, then the Armijo line-
search method will find aµk such that the cost function will



Armijo line-search routine

Input parameters: Wk, Sk, DWk

Output parameters: µk

Constants: µ0, η, γ, ǫ

Early termination criteria: µ ‖Sk‖ < ǫ

Initialization: µ := µ0

if Re{〈DWk,Sk〉} > 0

thenµ := −µ

while J
`

Wk

´

− J
`

Wk + γ−1µ Sk

´

≥ −η γ−1 µ Re{〈DWk,Sk〉}

do µ := γ−1 · µ

while J
`

Wk

´

− J
`

Wk + µSk

´

< −η µ Re{〈DWk,Sk〉}

do µ := γ · µ

return µk := µ

Figure 2: Armijo line search method for the matrix form. Here
‖.‖ , 〈. , .〉1/2 denotes the induced norm. The extension to the
polynomial-matrix form is straightforward by replacing the in-
ner product〈. , .〉 with 〈. , .〉

F
. In case the search directionSk is

pointing in a ascent direction,µk will become negative, such that
the resulting updateµkSk will be in a decent direction. The inner
product needs to be computed only once within an Armijo line
search.

decrease, i.e.,J
`

Wk(z) + µk Sk(z)
´

≤ J
`

Wk(z)
´

. In Ap-
pendix A the Armijo rule is described in vector, matrix, and poly-
nomial matrix form. A routine to compute the Armijo step size
for an arbitrary search direction is given in Fig. 2.

4 Efficient implementation in the frequency domain

The proposed algorithm, including the Armijo-line search
method can be implemented efficiently in the frequency domain.
To this end, we compute the linear (multichannel) convolutions
via fast convolution techniques, where the linear convolutions
are embedded in circular convolutions. The circular convolutions
themselves are computed efficiently via FFT / IFFT and element-
wise multiplications in the DFT domain. This strategy, if prop-
erly applied, does not change the original cost function nordoes
is modify the direction of the gradient, even though we transform
some of the signals into the frequency domain. Hence the final
algorithm will not suffer any permutation problem. The proposed
algorithm is given in Fig. 7 and works also for complex source
signals and complex filter coefficients. Furthermore,W(z) can
be a non-square matrix (Mu ≤ Mx). The notation of the vectors
and the derivation are based on the same concepts as described
in [2, Chapter 3 & Appendix F].
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Figure 3: Impulse responses of the4 × 2 mixing filter A(z)
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Figure 4: Impulse responses of the2 × 4 demixing filterW(z)

The proposed algorithm differs primarely from the algorithm
in [3] by the additional line search incorporated into update stat-
egy. Note that we can also perform the Armijo line search method
in the frequency domain, under two conditions: (i) the search di-
rection in the frequency domain is derived from the time-domain
gradient, and (ii) the line search is carried out in all frequencies
jointly (the sameµ for all frequency bins). Generally speaking,
the inner products〈. , .〉F can also be computed in the discrete
Fourier domain, as long as the DFT lengthC is chosen large
enough to avoid circular wrap around effects.

We also make use of another simplification. Since we
choose the search directionSk(z) according to (24), we have
〈DWk(z),Sk(z)〉

F
= −‖Sk(z)‖2

F
. Here we made use that the

inner product between a diagonal matrix and an off-diagonalma-
trix is always zero, i.e.,〈diag(DWk(z) ),Sk(z)〉

F
= 0. The

norm‖Sk(z)‖2
F

can also be computed in the discrete Fourier do-
main, in the same way asJ [k] computes the norm ofJ (Wk(z)).
Moreover,‖Sk(z)‖

F
can also serve to evaluate the termination

condition of the Armijo line search, see Fig. 2.

The full implementation of the algorithm is not completely
described in Fig. 7. Primarily the steps of the Armijo line search
method in Fig. 2 are missing. However, the computational steps
of how to computeJ (Wk(z) + µS(z)) are exactly the same as
to computeJ (Wk(z)). The only difference is that̄wmn[k] is
replaced byw̄mn[k] + µ · s̄mn[k] when computingJ [k]. The
IFFT / FFT operation carried out to obtain̄smn[k] is required to
prevent that the filter length ofW(z) grows.



−100 0 100
−1

0

1

−100 0 100
−1

0

1

−100 0 100
−1

0

1

−100 0 100
−1

0

1

Figure 5: Impulse responses of the2 × 2 global systemG(z)

5 Simulation example

To verify the performance of the proposed algorithm, we setup
an artificial mixing system withMs = 2 source signals and
Mx = 4 sensors. The mixing systemA(z) is extracted from
real measured HRTFs (head-related transfer functions) andhave
lengthNa = 100. The correlation matricesRss (z; tp) of P = 3
snapshots are generated artificially to be diagonal matrices with
diagonal elements(Rss(z; tp))m,m = b(z; tp) b†(z; tp) where
b(z; tp) are randomly chosen filters of length 20. This setup
simulates the case where the source signals are non-stationary
and non-white. The input correlation matrices are computed as
Rxx(z; tp) = A(z)Rss(z; tp)A

†(z). This artificial generation
of {Rss (z; tp)} guarantees that the global minimum ofJ1 is, in
fact, zero. The demixing systemW(z) is a2 × 4 matrix where
each filter has length 199, (Nw = 99). The impulse responses of
W(z) andG(z) after convergence are shown in Fig. 4 and Fig. 5.
From the vanishing off-diagonal impulse responses ofG(z) it is
clearly seen, that the proposed algorithm can perform almost per-
fect signal separation. Fig. 5 also indicates that the proposed algo-
rithm does not suffer any permutation problem. The convergence
behavior is shown in Fig. 6. It is clearly seen, that including the
Armijo line search into the update can improve the convergance
behavior considerably.

6 Conclusions

The presented algorithm is an extended version of the algorithm
in [3]. In addition to the previous algorithm, we added an Armijo
line search into the update equation. In contrast to Newton meth-
ods, which are very effective for quadratic cost functions or in the
vicinity of a local minimum, the Armijo line search method helps
also to improve the initial convergence. This statement is espe-
cially true for our case, as the optimization parameters appear up
to the fourth power in the cost function. Moreover, it turns out
that the new algorithm is also more robust against ill conditioned
problems, and no additional normalization is required.

Line search methods are often used in optimization problems
to improve the convergence behavior of a gradient based opti-
mization algorithm. Incorporating line-search methods inthe up-
date strategy was previously suggested for the non-convolutive
JAD problem. In [11] an Armijo line search method was used
for the JAD problem with unitary matrices (Stiefel manifold) and
in [12] an exact line search method was used for the JAD problem
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Figure 6: Comparison between (i) fixed step size, (ii) with Armijo
line search, and (iii) fixed step size for the first 50 iterations, then
with Armijo line search. The curves are for a typical single trial:
(top) blind cost functionJ (W(z)[k]), (middle) interchannel in-
terference ICI[k], and (bottom) step sizeµk.

with non-unitary matrices. In order to apply an Armijo line search
method to the convolutive JAD problem, we needed to extend the
Armijo rule to the case of polynomial matrices.

Similarly to the previous algorithm, the cost function is for-
mulated in the time domain, and also the derivation the gradient.
By computing the linear convolutions via fast convolution tech-
niques, most of the computation is carried out in the frequency
domain. In doing so, we can elegantly avoid the so called permu-
tation problem, which appears, if the cost function is formulated
directly in the frequency domain on a bin-by-bin basis.
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A Armijo Rule

A.1 Armijo rule in vector form

The Armijo rule is used in a line-search problem to find a reason-
able step-sizeµ, see [9]. For fixed scalars0 < µ0, 0 < η < 1,
and0 < γ < 1, the Armijo rule chooses at thekth iteration the
step sizeµk = µ0 γm wherem is the first nonnegative integer
that fulfills

J (wk) − J (wk + µ0 γm
sk) ≥ −η µ0 γm Re{〈dwk, sk〉}

(25)

The search direction and the gradient ofJ at wk are denoted as
sk anddwk, respectively, and〈dwk, sk〉 , s

H
k dwk. Note that

J (wk) is a real function, whereas thewk can be complex.

A.2 Armijo rule in matrix form

Similarly to the vector form, Armijo rule chooses at thekth iter-
ation the step sizeµk = µ0 γm wherem is the first nonnegative
integer that fulfills

J (Wk) − J (Wk + µ0 γm
Sk) ≥ −η µ0 γm Re{〈DWk,Sk〉}

(26)

The search direction and the gradient ofJ atWk are denoted as
Sk andDWk, respectively, and〈DWk,Sk〉 , tr{SH

k DWk}.

A.3 Armijo rule in polynomial-matrix form

Similarly to the vector and matrix form, Armijo rule choosesat
thekth iteration the step sizeµk = µ0 γm wherem is the first
nonnegative integer that fulfills

J
`

Wk(z)
´

− J
`

Wk(z) + µ0 γm
Sk(z)

´

≥ −η µ0 γm Re
˘

〈DWk(z),Sk(z)〉
F

¯

(27)

The search direction and the gradient ofJ atWk(z) are denoted
asSk(z) andDWk(z), respectively, and the inner product〈., .〉F
is defined in (7).

FCJD-ALS
Definitions:

P̃N ,

2

4

IN+1 0 0

0 0C−2N−1 0

0 0 IN

3

5

w̃mn[k] , (wmn,0[k], . . . , wmn,Nw [k], 0, . . . ,

0, wmn,−Nw [k], . . . , wmn,−1[k])T

Initialization (∀m, n, p):

w̃mn[0] :=

(

(1, 0, . . . , 0)T for m = n

(0, 0, . . . , 0)T for m 6= n

w̄mn[0] := FFT( w̃mn[0] )

Precompute spatiotemporal input correlations (∀m,n, p):

r(p)
xmxn

(τ ) := E{xm(tp) x∗
n(tp − τ )} for τ ∈{−τxx, .., τxx}

r̃
(p)
xmxn

:= (r(p)
xmxn

(0), . . . , r(p)
xmxn

(τxx), 0, . . . ,

0, r(p)
xmxn

(−τxx), . . . , r
(p)
xmxn

(−1))T

r̄
(p)
xmxn

:= FFT( r̃(p)
xmxn

)

For each iterationk do (∀m, n, p):

r̄
(p)
umxn

[k] :=
XMx

l=1
w̄ml[k] ⊙ r̄

(p)
xlxn

r̄
(p)
umun

[k] :=
XMx

l=1
w̄

∗
nl[k] ⊙ r̄

(p)
umxl

[k]

r̃
(p)
umun

[k] := IFFT( r̄(p)
umun

[k] )

ẽ
(p)
mn[k] :=

(

0 for m = n

P̃τe r̃
(p)
umun

[k] for m 6= n

ē
(p)
mn[k] := FFT( ẽ(p)

mn[k] )

J [k] :=
XP

p=1

XMu

m=1

XMu

n=1

‚

‚ē
(p)
mn[k]

‚

‚

2

F

∆w̄mn[k] :=
XP

p=1

XMu

l=1
ē
(p)
ml [k] ⊙ r̄

(p)
ulxn

[k]

compute search direction:

s̄mn[k] :=

(

0 for m = n

−FFT
“

P̃NwIFFT (∆w̄mn[k])
”

m 6= n

µk := Armijo line search
`

{w̄mn[k]}, {s̄mn[k]}
´

w̄mn[k + 1] :=

(

w̄mn[k] for m = n

w̄mn[k] + µk · s̄mn[k] for m 6= n

Figure 7: FCJD-ALS: Fast convolutive joint diagonalization with
Armijo line search. All vectors have length C, which is the FFT
size. In order to prevent circular wrap-around effects affecting
the updates, the FFT size needs to be chosen large enough. The
notation and the concept behind the arrangement of the vector
elements are taken from [2, Chapter 3 & Appendix F].


